Averaging Principle for Caputo Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion with Delays

In this article, we investigate a class of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays. Under some novel assumptions, the averaging principle of the system is obtained. Finally, we give an example to show that the solution of Caputo fractional...

Full description

Bibliographic Details
Main Authors: Pengju Duan, Hao Li, Jie Li, Pei Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6646843
Description
Summary:In this article, we investigate a class of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays. Under some novel assumptions, the averaging principle of the system is obtained. Finally, we give an example to show that the solution of Caputo fractional stochastic differential equations driven by fractional Brownian motion with delays converges to the corresponding averaged stochastic differential equation.
ISSN:1099-0526