Dimensionality Reduction with Sparse Locality for Principal Component Analysis

Various dimensionality reduction (DR) schemes have been developed for projecting high-dimensional data into low-dimensional representation. The existing schemes usually preserve either only the global structure or local structure of the original data, but not both. To resolve this issue, a scheme ca...

Full description

Bibliographic Details
Main Authors: Pei Heng Li, Taeho Lee, Hee Yong Youn
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/9723279
Description
Summary:Various dimensionality reduction (DR) schemes have been developed for projecting high-dimensional data into low-dimensional representation. The existing schemes usually preserve either only the global structure or local structure of the original data, but not both. To resolve this issue, a scheme called sparse locality for principal component analysis (SLPCA) is proposed. In order to effectively consider the trade-off between the complexity and efficiency, a robust L2,p-norm-based principal component analysis (R2P-PCA) is introduced for global DR, while sparse representation-based locality preserving projection (SR-LPP) is used for local DR. Sparse representation is also employed to construct the weighted matrix of the samples. Being parameter-free, this allows the construction of an intrinsic graph more robust against the noise. In addition, simultaneous learning of projection matrix and sparse similarity matrix is possible. Experimental results demonstrate that the proposed scheme consistently outperforms the existing schemes in terms of clustering accuracy and data reconstruction error.
ISSN:1024-123X
1563-5147