Next-Generation Sequencing of Coccidioides immitis Isolated during Cluster Investigation

Next-generation sequencing enables use of whole-genome sequence typing (WGST) as a viable and discriminatory tool for genotyping and molecular epidemiologic analysis. We used WGST to confirm the linkage of a cluster of Coccidioides immitis isolates from 3 patients who received organ transplants from...

Full description

Bibliographic Details
Main Authors: David M. Engelthaler, Tom M. Chiller, James A. Schupp, Joshua Colvin, Stephen M. Beckstrom-Sternberg, Elizabeth M. Driebe, Tracy Moses, Waibhav Tembe, Shripad Sinari, James S. Beckstrom-Sternberg, Alexis Christoforides, John V. Pearson, John Carpten, Paul Keim, Ashley Peterson, Dawn Terashita, S. Arunmozhi Balajee
Format: Article
Language:English
Published: Centers for Disease Control and Prevention 2011-02-01
Series:Emerging Infectious Diseases
Subjects:
Online Access:https://wwwnc.cdc.gov/eid/article/17/2/10-0620_article
Description
Summary:Next-generation sequencing enables use of whole-genome sequence typing (WGST) as a viable and discriminatory tool for genotyping and molecular epidemiologic analysis. We used WGST to confirm the linkage of a cluster of Coccidioides immitis isolates from 3 patients who received organ transplants from a single donor who later had positive test results for coccidioidomycosis. Isolates from the 3 patients were nearly genetically identical (a total of 3 single-nucleotide polymorphisms identified among them), thereby demonstrating direct descent of the 3 isolates from an original isolate. We used WGST to demonstrate the genotypic relatedness of C. immitis isolates that were also epidemiologically linked. Thus, WGST offers unique benefits to public health for investigation of clusters considered to be linked to a single source.
ISSN:1080-6040
1080-6059