Tribological Characteristics of Single-Layer h-BN Measured by Colloidal Probe Atomic Force Microscopy

The tribological characteristics of single-layer (1L) hexagonal-boron nitride (h-BN) were systematically investigated using colloidal probe atomic force microscopy, with an aim to elucidate the feasibility as a protective coating layer and solid lubricant for micro- and nanodevices. The experiments...

Full description

Bibliographic Details
Main Authors: Tien Van Tran, Koo-Hyun Chung
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/6/530
Description
Summary:The tribological characteristics of single-layer (1L) hexagonal-boron nitride (h-BN) were systematically investigated using colloidal probe atomic force microscopy, with an aim to elucidate the feasibility as a protective coating layer and solid lubricant for micro- and nanodevices. The experiments were performed to detect the occurrence of failure of 1L h-BN for up to 10,000 cycles under various normal forces. The failure of 1L h-BN did not occur for 10,000 cycles under a 10 μN normal force, corresponding to a contact pressure of about 0.34 GPa. However, the complete failure of 1L h-BN occurred faster with an increasing normal force from 20 to 42 μN. It was observed that the SiO<sub>2</sub>/Si substrate was locally exposed due to defect formation on the 1L h-BN. The Raman spectroscopy measurement results further suggest that the failure was associated with the compressive strain on 1L h-BN. The friction of 1L h-BN before failure was orders of magnitude smaller than that of a SiO<sub>2</sub>/Si substrate. The overall results indicate the feasibility of atomically thin h-BN as a protective coating layer and solid lubricant. In particular, the results of this work provide fundamental tribological characteristics of pristine h-BN as a guide, which may be helpful in other practical deposition methods for atomically thin h-BN with enhanced tribological characteristics.
ISSN:2079-6412