Laguerre-type Bell polynomials

We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result con...

Full description

Bibliographic Details
Main Authors: P. Natalini, P. E. Ricci
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/45423
id doaj-37cc54cbc9a940baa371e04563419e1f
record_format Article
spelling doaj-37cc54cbc9a940baa371e04563419e1f2020-11-24T21:23:48ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/4542345423Laguerre-type Bell polynomialsP. Natalini0P. E. Ricci1Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, Roma 00146, ItalyDipartimento di Matematica, Università delgi Studi di Roma “La Sapienza,“, P. le Aldo Moro 2, Roma 00185, ItalyWe develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.http://dx.doi.org/10.1155/IJMMS/2006/45423
collection DOAJ
language English
format Article
sources DOAJ
author P. Natalini
P. E. Ricci
spellingShingle P. Natalini
P. E. Ricci
Laguerre-type Bell polynomials
International Journal of Mathematics and Mathematical Sciences
author_facet P. Natalini
P. E. Ricci
author_sort P. Natalini
title Laguerre-type Bell polynomials
title_short Laguerre-type Bell polynomials
title_full Laguerre-type Bell polynomials
title_fullStr Laguerre-type Bell polynomials
title_full_unstemmed Laguerre-type Bell polynomials
title_sort laguerre-type bell polynomials
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2006-01-01
description We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.
url http://dx.doi.org/10.1155/IJMMS/2006/45423
work_keys_str_mv AT pnatalini laguerretypebellpolynomials
AT pericci laguerretypebellpolynomials
_version_ 1725991088665133056