Scaling laws in Hall inertial-range turbulence

<p>There is an increasing amount of observational evidence in space plasmas for the breakdown of inertial-range spectra of magnetohydrodynamic (MHD) turbulence on spatial scales smaller than the ion-inertial length. Magnetic energy spectra often exhibit a steepening, which is reminiscent of di...

Full description

Bibliographic Details
Main Authors: Y. Narita, W. Baumjohann, R. A. Treumann
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/37/825/2019/angeo-37-825-2019.pdf
Description
Summary:<p>There is an increasing amount of observational evidence in space plasmas for the breakdown of inertial-range spectra of magnetohydrodynamic (MHD) turbulence on spatial scales smaller than the ion-inertial length. Magnetic energy spectra often exhibit a steepening, which is reminiscent of dissipation of turbulence energy, for example in wave–particle interactions. Electric energy spectra, on the other hand, tend to be flatter than those of MHD turbulence, which is indicative of a dispersive process converting magnetic into electric energy in electromagnetic wave excitation. Here we develop a model of the scaling laws and the power spectra for the Hall inertial range in plasma turbulence. In the present paper we consider a two-dimensional geometry with no wave vector component parallel to the magnetic field as is appropriate in Hall MHD. A phenomenological approach is taken. The Hall electric field attains an electrostatic component when the wave vectors are perpendicular to the mean magnetic field. The power spectra of Hall turbulence are steep for the magnetic field with a slope of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">7</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="8ad467e5ebb510fb36fcc80fab34490b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="angeo-37-825-2019-ie00001.svg" width="28pt" height="14pt" src="angeo-37-825-2019-ie00001.png"/></svg:svg></span></span> for compressible magnetic turbulence; they are flatter for the Hall electric field with a slope of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c787672802e0970591713dcc00ab40c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="angeo-37-825-2019-ie00002.svg" width="28pt" height="14pt" src="angeo-37-825-2019-ie00002.png"/></svg:svg></span></span>. Our model for the Hall turbulence gives a possible explanation for the steepening of the magnetic energy spectra in the solar wind as an indication of neither the dissipation range nor the dispersive range but as the Hall inertial range. Our model also reproduces the shape of energy spectra in Kelvin–Helmholtz turbulence observed at the Earth's magnetopause.</p>
ISSN:0992-7689
1432-0576