Quantum ferromagnet in the proximity of the tricritical point

Quantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbatio...

Full description

Bibliographic Details
Main Authors: Petr Opletal, Jan Prokleška, Jaroslav Valenta, Petr Proschek, Vladimír Tkáč, Róbert Tarasenko, Marie Běhounková, Šárka Matoušková, Mohsen M. Abd-Elmeguid, Vladimír Sechovský
Format: Article
Language:English
Published: Nature Publishing Group 2017-06-01
Series:npj Quantum Materials
Online Access:https://doi.org/10.1038/s41535-017-0035-6
id doaj-381ee9ececb24929abdc3f0b0ed7267e
record_format Article
spelling doaj-381ee9ececb24929abdc3f0b0ed7267e2021-04-02T19:02:24ZengNature Publishing Groupnpj Quantum Materials2397-46482017-06-01211610.1038/s41535-017-0035-6Quantum ferromagnet in the proximity of the tricritical pointPetr Opletal0Jan Prokleška1Jaroslav Valenta2Petr Proschek3Vladimír Tkáč4Róbert Tarasenko5Marie Běhounková6Šárka Matoušková7Mohsen M. Abd-Elmeguid8Vladimír Sechovský9Charles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsInstitute of Geology, Czech Academy of Science v.v.i.Charles University, Faculty of Mathematics and PhysicsCharles University, Faculty of Mathematics and PhysicsQuantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbations such as hydrostatic pressure, chemical composition or magnetic fields. Jan Prokleška at Czesh Charles University and colleagues from Czech Republic and Germany demonstrate that it is possible to tune the QPT of the metallic ferromagnet UCo1-xRuxAl by pressure or weak Ru doping. The experimental study of QPTs in metallic ferromagnets is typically hindered by the extreme conditions required to drive the system into the transition, or by the presence of additional phases such as superconductivity. Instead, UCo1-xRuxAl allows to get access to the QPT at easily accessible experimental conditions, opening the possibility of studying in detail quantum critical phenomena.https://doi.org/10.1038/s41535-017-0035-6
collection DOAJ
language English
format Article
sources DOAJ
author Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
spellingShingle Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
Quantum ferromagnet in the proximity of the tricritical point
npj Quantum Materials
author_facet Petr Opletal
Jan Prokleška
Jaroslav Valenta
Petr Proschek
Vladimír Tkáč
Róbert Tarasenko
Marie Běhounková
Šárka Matoušková
Mohsen M. Abd-Elmeguid
Vladimír Sechovský
author_sort Petr Opletal
title Quantum ferromagnet in the proximity of the tricritical point
title_short Quantum ferromagnet in the proximity of the tricritical point
title_full Quantum ferromagnet in the proximity of the tricritical point
title_fullStr Quantum ferromagnet in the proximity of the tricritical point
title_full_unstemmed Quantum ferromagnet in the proximity of the tricritical point
title_sort quantum ferromagnet in the proximity of the tricritical point
publisher Nature Publishing Group
series npj Quantum Materials
issn 2397-4648
publishDate 2017-06-01
description Quantum phase transitions: Tuned in metallic ferromagnets Clean ferromagnetic systems are predicted to exhibit quantum phase transitions (QPTs) rather than critical points. QPTs happen at zero temperature due to quantum fluctuations between the phases, and can be triggered by non-thermal perturbations such as hydrostatic pressure, chemical composition or magnetic fields. Jan Prokleška at Czesh Charles University and colleagues from Czech Republic and Germany demonstrate that it is possible to tune the QPT of the metallic ferromagnet UCo1-xRuxAl by pressure or weak Ru doping. The experimental study of QPTs in metallic ferromagnets is typically hindered by the extreme conditions required to drive the system into the transition, or by the presence of additional phases such as superconductivity. Instead, UCo1-xRuxAl allows to get access to the QPT at easily accessible experimental conditions, opening the possibility of studying in detail quantum critical phenomena.
url https://doi.org/10.1038/s41535-017-0035-6
work_keys_str_mv AT petropletal quantumferromagnetintheproximityofthetricriticalpoint
AT janprokleska quantumferromagnetintheproximityofthetricriticalpoint
AT jaroslavvalenta quantumferromagnetintheproximityofthetricriticalpoint
AT petrproschek quantumferromagnetintheproximityofthetricriticalpoint
AT vladimirtkac quantumferromagnetintheproximityofthetricriticalpoint
AT roberttarasenko quantumferromagnetintheproximityofthetricriticalpoint
AT mariebehounkova quantumferromagnetintheproximityofthetricriticalpoint
AT sarkamatouskova quantumferromagnetintheproximityofthetricriticalpoint
AT mohsenmabdelmeguid quantumferromagnetintheproximityofthetricriticalpoint
AT vladimirsechovsky quantumferromagnetintheproximityofthetricriticalpoint
_version_ 1721549855425298432