Numerical solution of a general interval quadratic programming model for portfolio selection.

Based on the Markowitz mean variance model, this paper discusses the portfolio selection problem in an uncertain environment. To construct a more realistic and optimized model, in this paper, a new general interval quadratic programming model for portfolio selection is established by introducing the...

Full description

Bibliographic Details
Main Authors: Jianjian Wang, Feng He, Xin Shi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0212913
Description
Summary:Based on the Markowitz mean variance model, this paper discusses the portfolio selection problem in an uncertain environment. To construct a more realistic and optimized model, in this paper, a new general interval quadratic programming model for portfolio selection is established by introducing the linear transaction costs and liquidity of the securities market. Regarding the estimation for the new model, we propose an effective numerical solution method based on the Lagrange theorem and duality theory, which can obtain the effective upper and lower bounds of the objective function of the model. In addition, the proposed method is illustrated with two examples, and the results show that the proposed method is better and more feasible than the commonly used portfolio selection method.
ISSN:1932-6203