Modeling of stress state of a perforated cement sheath in a well with hydraulic fracture

Modeling of stress state of a perforated cement sheath in a well with hydraulic fracture is performed. The incompressible fluid flow model is used to calculate the pore pressure of a fluid. The linear-elastic body model and finite volume method with multipoint stress approximation are used to cal...

Full description

Bibliographic Details
Main Authors: Kireev, Timur Faritovich, Bulgakova, Guzel Talgatovna
Format: Article
Language:English
Published: Samara State Technical University 2019-01-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Online Access:http://mi.mathnet.ru/vsgtu1744
Description
Summary:Modeling of stress state of a perforated cement sheath in a well with hydraulic fracture is performed. The incompressible fluid flow model is used to calculate the pore pressure of a fluid. The linear-elastic body model and finite volume method with multipoint stress approximation are used to calculate the stress state of the cement sheath and production casing. The numerical model was verified by comparing the calculation results with a calculation in the Fenics open-source computing platform. It is shown that the maximum value of von Mises stress falls on the perforation zone at the junction of the cement sheath and the production casing. The presence of a hydraulic fracture can reduce the stress of the cement sheath.
ISSN:1991-8615
2310-7081