Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation

Abstract Background Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and t...

Full description

Bibliographic Details
Main Authors: Jiaqi Sun, Junzheng Yang, Xiaoli Miao, Horace H. Loh, Duanqing Pei, Hui Zheng
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Cell Regeneration
Subjects:
Online Access:https://doi.org/10.1186/s13619-020-00070-4
Description
Summary:Abstract Background Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and ten-eleven translocation proteins facilitate the maintenance, interpretation, and removal of DNA methylation, respectively. Different forms of methylation, including 5-methylcytosine, 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently developed sequencing technologies. Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development, plasticity, and disorders of the mammalian central nervous system. Neural stem cells (NSCs), originating from the neuroepithelium, generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain. Main body Here, we summarized recent research in proteins responsible for the establishment, maintenance, interpretation, and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs. In addition, we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases. Conclusion Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding.
ISSN:2045-9769