Development of a DC-Side Direct Current Controlled Active Ripple Filter for Eliminating the Double-Line-Frequency Current Ripple in a Single-Phase DC/AC Conversion System

The objective of this paper is to propose an active ripple filter (ARF) using the patented DC-side direct current control for eliminating the double-line-frequency current ripple in a single-phase DC/AC conversion system. The proposed ARF and its control strategies can not only prolong the usage lif...

Full description

Bibliographic Details
Main Authors: Ying-Chieh Chen, Liang-Rui Chen, Ching-Ming Lai, Yuan-Chih Lin, Ting-Jung Kuo
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/18/4772
Description
Summary:The objective of this paper is to propose an active ripple filter (ARF) using the patented DC-side direct current control for eliminating the double-line-frequency current ripple in a single-phase DC/AC conversion system. The proposed ARF and its control strategies can not only prolong the usage life of the DC energy source but also improve the DC/AC system performance. At first, the phenomena of double-line-frequency current ripple and the operation principle of the ARF are illustrated. Then, steady-state analysis, small-signal model, and control loop design of the ARF architecture are derived. The proposed control system includes: (1) a DC current control loop to provide the excellent ripple eliminating performance on the output of the DC energy source; (2) a voltage control loop for the high-side DC-bus voltage of the ARF to achieve good steady-state and transient-state responses; (3) a voltage feedforward loop for the low-side voltage of the ARF to cancel the voltage fluctuation caused by the instability of the DC energy source. Finally, the feasibility of the proposed concept can be verified by the system simulation, and the experimental results show that the nearly zero double-line-frequency current ripple on the DC-side in a single-phase DC/AC conversion system can be achieved.
ISSN:1996-1073