Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn

Beginning with the Skyrme interaction, we study the properties of the isoscalar giant monopole resonances (ISGMR) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>132&l...

Full description

Bibliographic Details
Main Authors: Nikolay N. Arsenyev, Alexey P. Severyukhin
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/5/145
id doaj-396785148762472a9dbf2b8af834e883
record_format Article
spelling doaj-396785148762472a9dbf2b8af834e8832021-05-31T23:54:30ZengMDPI AGUniverse2218-19972021-05-01714514510.3390/universe7050145Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>SnNikolay N. Arsenyev0Alexey P. Severyukhin1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, RussiaBogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, RussiaBeginning with the Skyrme interaction, we study the properties of the isoscalar giant monopole resonances (ISGMR) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>132</mn></msup></semantics></math></inline-formula>Sn. Using the finite-rank separable approximation for the particle-hole interaction, the coupling between one- and two-phonon terms in the wave functions of excited states is taken into account in very large configurational spaces. The inclusion of the phonon–phonon coupling (PPC) results in the formation of a low-energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>0</mn><mo>+</mo></msup></semantics></math></inline-formula> state. The PPC inclusion leads to a fragmentation of the ISGMR strength to lower energy states and also to a higher energy tail. Using the same set of parameters, we describe the available experimental data for the ISGMR characteristics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>118</mn><mo>,</mo><mn>120</mn><mo>,</mo><mn>122</mn><mo>,</mo><mn>124</mn></mrow></msup></semantics></math></inline-formula>Sn and give a prediction for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>126</mn><mo>,</mo><mn>128</mn><mo>,</mo><mn>130</mn><mo>,</mo><mn>132</mn></mrow></msup></semantics></math></inline-formula>Sn.https://www.mdpi.com/2218-1997/7/5/145collective levelsgiant resonancesnuclear density functional theory
collection DOAJ
language English
format Article
sources DOAJ
author Nikolay N. Arsenyev
Alexey P. Severyukhin
spellingShingle Nikolay N. Arsenyev
Alexey P. Severyukhin
Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
Universe
collective levels
giant resonances
nuclear density functional theory
author_facet Nikolay N. Arsenyev
Alexey P. Severyukhin
author_sort Nikolay N. Arsenyev
title Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
title_short Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
title_full Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
title_fullStr Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
title_full_unstemmed Origin of Low- and High-Energy Monopole Collectivity in <sup>132</sup>Sn
title_sort origin of low- and high-energy monopole collectivity in <sup>132</sup>sn
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2021-05-01
description Beginning with the Skyrme interaction, we study the properties of the isoscalar giant monopole resonances (ISGMR) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>132</mn></msup></semantics></math></inline-formula>Sn. Using the finite-rank separable approximation for the particle-hole interaction, the coupling between one- and two-phonon terms in the wave functions of excited states is taken into account in very large configurational spaces. The inclusion of the phonon–phonon coupling (PPC) results in the formation of a low-energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>0</mn><mo>+</mo></msup></semantics></math></inline-formula> state. The PPC inclusion leads to a fragmentation of the ISGMR strength to lower energy states and also to a higher energy tail. Using the same set of parameters, we describe the available experimental data for the ISGMR characteristics of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>118</mn><mo>,</mo><mn>120</mn><mo>,</mo><mn>122</mn><mo>,</mo><mn>124</mn></mrow></msup></semantics></math></inline-formula>Sn and give a prediction for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mn>126</mn><mo>,</mo><mn>128</mn><mo>,</mo><mn>130</mn><mo>,</mo><mn>132</mn></mrow></msup></semantics></math></inline-formula>Sn.
topic collective levels
giant resonances
nuclear density functional theory
url https://www.mdpi.com/2218-1997/7/5/145
work_keys_str_mv AT nikolaynarsenyev originoflowandhighenergymonopolecollectivityinsup132supsn
AT alexeypseveryukhin originoflowandhighenergymonopolecollectivityinsup132supsn
_version_ 1721416203089477632