Application of Super-Amphiphilic Silica-Nanogel Composites for Fast Removal of Water Pollutants

This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by...

Full description

Bibliographic Details
Main Authors: Ayman M. Atta, Hamad A. Al-Lohedan, Ahmed M. Tawfik, Abdelrahman O. Ezzat
Format: Article
Language:English
Published: MDPI AG 2016-10-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/21/10/1392
Description
Summary:This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by dispersion polymerization technique. The morphologies and the dispersion stability of nanogel composites were investigated to clarify the ability of silica-nanogel composites to adsorb at different interfaces. The feasibility of silica polyacrylamide nanogel composites to act as a high-performance adsorbent for removal of methylene blue (MB) dye and heavy metals (Co2+ and Ni2+) from aqueous solution was investigated. The surface tension, contact angle, average pore size, and zeta potential of the silica-nanogel composites have been evaluated. The MB dye and heavy metal adsorption capacity achieved Qmax = 438–387 mg/g which is considerably high. The adsorption capacity results are explained from the changes in the morphology of the silica surfaces as recorded from scanning electron microscopy (SEM).
ISSN:1420-3049