A Robust Optimization Strategy for Domestic Electric Water Heater Load Scheduling under Uncertainties

In this paper, a robust optimization strategy is developed to handle the uncertainties for domestic electric water heater load scheduling. At first, the uncertain parameters, including hot water demand and ambient temperature, are described as the intervals, and are further divided into different ro...

Full description

Bibliographic Details
Main Authors: Jidong Wang, Yingchen Shi, Kaijie Fang, Yue Zhou, Yinqi Li
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/7/11/1136
Description
Summary:In this paper, a robust optimization strategy is developed to handle the uncertainties for domestic electric water heater load scheduling. At first, the uncertain parameters, including hot water demand and ambient temperature, are described as the intervals, and are further divided into different robust levels in order to control the degree of the conservatism. Based on this, traditional load scheduling problem is rebuilt by bringing the intervals and robust levels into the constraints, and are thus transformed into the equivalent deterministic optimization problem, which can be solved by existing tools. Simulation results demonstrate that the schedules obtained under different robust levels are of complete robustness. Furthermore, in order to offer users the most optimal robust level, the trade-off between the electricity bill and conservatism degree are also discussed.
ISSN:2076-3417