Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds
Lucas sequences of the first and second kinds are, respectively, the integer sequences $ (U_n)_{n\geq0} $ and $ (V_n)_{n\geq0} $ depending on parameters $ a, b\in\mathbb{Z} $ and defined by the recurrence relations $ U_0 = 0 $, $ U_1 = 1 $, and $ U_n = aU_{n-1}+bU_{n-2} $ for $ n\geq2 $, $ V_0 = 2 $...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-08-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://aimspress.com/article/doi/10.3934/math.2021682?viewType=HTML |