The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia

High-tech metals including Ge, Ga and In are often sourced as by-products from a range of ore minerals, including sphalerite from Zn-Pb deposits. The Hilton Zn-Pb (Ag) deposit in the Mount Isa Inlier, Queensland, contains six textural varieties of sphalerite that have formed through a diverse range...

Full description

Bibliographic Details
Main Authors: Bradley Cave, Richard Lilly, Wei Hong
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/9/797
id doaj-3bd4079a89944b1682eb566ebe123114
record_format Article
spelling doaj-3bd4079a89944b1682eb566ebe1231142020-11-25T03:47:22ZengMDPI AGMinerals2075-163X2020-09-011079779710.3390/min10090797The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, AustraliaBradley Cave0Richard Lilly1Wei Hong2Mawson Centre for Geoscience, Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, AustraliaMawson Centre for Geoscience, Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, AustraliaMawson Centre for Geoscience, Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, AustraliaHigh-tech metals including Ge, Ga and In are often sourced as by-products from a range of ore minerals, including sphalerite from Zn-Pb deposits. The Hilton Zn-Pb (Ag) deposit in the Mount Isa Inlier, Queensland, contains six textural varieties of sphalerite that have formed through a diverse range of processes with variable co-crystallising sulphides. This textural complexity provides a unique opportunity to examine the effects of co-crystallising sulphides and chemical remobilisation on the trace element geochemistry of sphalerite. Early sphalerite (sph-1) is stratabound and coeval with pyrrhotite, pyrite and galena. Disseminated sphalerite (sph-2) occurs as isolated fine-grained laths rarely associated with co-crystallising sulphides and represents an alteration selvage accompanying the precipitation of early stratabound sphalerite (sph-1). Sphalerite (sph-3) occurs in early ferroan-dolomite veins and formed from the chemical remobilisation of stratabound sphalerite (sph-1) during brittle fracturing and interstitial fluid flow. This generation of veins terminate at the interface, and occurs within clasts of the paragenetically later sphalerite-dominated breccias (sph-4). Regions of high-grade Cu (>2%) mineralisation contain a late generation of sphalerite (sph-5), which formed from the recrystallisation of breccia-type sphalerite (sph-4) during the infiltration of a paragenetically late Cu- and Pb-rich fluid. Late ferroan-dolomite veins crosscut all previous stages of mineralisation and also contain chemically remobilised sphalerite (sph-6). Major and trace elements including Fe, Co, In, Sn, Sb, Ag and Tl are depleted in sphalerite associated with abundant co-crystallised neighbouring sulphides (e.g., pyrite, pyrrhotite, galena and chalcopyrite) relative to sphalerite associated with minor to no co-crystallising sulphides. This depletion is attributed to the incorporation of the trace elements into the competing sulphide minerals. Chemically remobilised sphalerite is enriched in Zn, Cd, Ge, Ga and Sn, and depleted in Fe, Tl, Co, Bi and occasionally Ag, Sb and Mn relative to the primary minerals. This is attributed to the higher mobility of Zn, Ge, Ga and Sn relative to Fe and Co during the chemical remobilisation process, coupled with the effect of co-crystallising with galena and ferroan-dolomite. Results from this study indicate that the consideration of co-crystallising sulphides and post-depositional processes are important in understanding the trace element composition of sphalerite on both a microscopic and deposit-scale, and has implications for a range of Zn-Pb deposits worldwide.https://www.mdpi.com/2075-163X/10/9/797sphaleritetrace elementsHilton Zn-Pb (Ag)sulphidesMount Isacritical metals
collection DOAJ
language English
format Article
sources DOAJ
author Bradley Cave
Richard Lilly
Wei Hong
spellingShingle Bradley Cave
Richard Lilly
Wei Hong
The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
Minerals
sphalerite
trace elements
Hilton Zn-Pb (Ag)
sulphides
Mount Isa
critical metals
author_facet Bradley Cave
Richard Lilly
Wei Hong
author_sort Bradley Cave
title The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
title_short The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
title_full The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
title_fullStr The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
title_full_unstemmed The Effect of Co-Crystallising Sulphides and Precipitation Mechanisms on Sphalerite Geochemistry: A Case Study from the Hilton Zn-Pb (Ag) Deposit, Australia
title_sort effect of co-crystallising sulphides and precipitation mechanisms on sphalerite geochemistry: a case study from the hilton zn-pb (ag) deposit, australia
publisher MDPI AG
series Minerals
issn 2075-163X
publishDate 2020-09-01
description High-tech metals including Ge, Ga and In are often sourced as by-products from a range of ore minerals, including sphalerite from Zn-Pb deposits. The Hilton Zn-Pb (Ag) deposit in the Mount Isa Inlier, Queensland, contains six textural varieties of sphalerite that have formed through a diverse range of processes with variable co-crystallising sulphides. This textural complexity provides a unique opportunity to examine the effects of co-crystallising sulphides and chemical remobilisation on the trace element geochemistry of sphalerite. Early sphalerite (sph-1) is stratabound and coeval with pyrrhotite, pyrite and galena. Disseminated sphalerite (sph-2) occurs as isolated fine-grained laths rarely associated with co-crystallising sulphides and represents an alteration selvage accompanying the precipitation of early stratabound sphalerite (sph-1). Sphalerite (sph-3) occurs in early ferroan-dolomite veins and formed from the chemical remobilisation of stratabound sphalerite (sph-1) during brittle fracturing and interstitial fluid flow. This generation of veins terminate at the interface, and occurs within clasts of the paragenetically later sphalerite-dominated breccias (sph-4). Regions of high-grade Cu (>2%) mineralisation contain a late generation of sphalerite (sph-5), which formed from the recrystallisation of breccia-type sphalerite (sph-4) during the infiltration of a paragenetically late Cu- and Pb-rich fluid. Late ferroan-dolomite veins crosscut all previous stages of mineralisation and also contain chemically remobilised sphalerite (sph-6). Major and trace elements including Fe, Co, In, Sn, Sb, Ag and Tl are depleted in sphalerite associated with abundant co-crystallised neighbouring sulphides (e.g., pyrite, pyrrhotite, galena and chalcopyrite) relative to sphalerite associated with minor to no co-crystallising sulphides. This depletion is attributed to the incorporation of the trace elements into the competing sulphide minerals. Chemically remobilised sphalerite is enriched in Zn, Cd, Ge, Ga and Sn, and depleted in Fe, Tl, Co, Bi and occasionally Ag, Sb and Mn relative to the primary minerals. This is attributed to the higher mobility of Zn, Ge, Ga and Sn relative to Fe and Co during the chemical remobilisation process, coupled with the effect of co-crystallising with galena and ferroan-dolomite. Results from this study indicate that the consideration of co-crystallising sulphides and post-depositional processes are important in understanding the trace element composition of sphalerite on both a microscopic and deposit-scale, and has implications for a range of Zn-Pb deposits worldwide.
topic sphalerite
trace elements
Hilton Zn-Pb (Ag)
sulphides
Mount Isa
critical metals
url https://www.mdpi.com/2075-163X/10/9/797
work_keys_str_mv AT bradleycave theeffectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
AT richardlilly theeffectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
AT weihong theeffectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
AT bradleycave effectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
AT richardlilly effectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
AT weihong effectofcocrystallisingsulphidesandprecipitationmechanismsonsphaleritegeochemistryacasestudyfromthehiltonznpbagdepositaustralia
_version_ 1724502286663680000