Synthesis and Characterization of Magnetic Nanocomposites for Environmental Remediation

In the present study, the effect of nano-magnetite (Fe3O4) content on mechanical and magnetic properties of polypropylene matrix is investigated. Magnetite nanoparticles were successfully synthesized by co- precipitation while the composites were prepared by an ex situ processing method involving so...

Full description

Bibliographic Details
Main Authors: H. Shirinova, L. Di Palma, F. Sarasini, J. Tirillo, M. Ramazanov, F. Hajiyeva, D. Sannino, M. Polichetti, A. Galluzzi
Format: Article
Language:English
Published: AIDIC Servizi S.r.l. 2016-05-01
Series:Chemical Engineering Transactions
Online Access:https://www.cetjournal.it/index.php/cet/article/view/4109
Description
Summary:In the present study, the effect of nano-magnetite (Fe3O4) content on mechanical and magnetic properties of polypropylene matrix is investigated. Magnetite nanoparticles were successfully synthesized by co- precipitation while the composites were prepared by an ex situ processing method involving solvent casting followed by compression molding. The nanoparticles and resulting nanocomposites were characterized by X- ray diffraction, thermogravimetric analysis, scanning electron microscopy, tensile testing and vibrating sample magnetometry. It was found that composites have tailorable mechanical and magnetic properties dependent on the content of magnetic filler. Increase of concentration of magnetite particles provides a significant increase of Young’s modulus without affecting the yield strength and the ductility. As regards the magnetic properties, nanocomposites having 10 wt% of nanoparticles exhibited a superparamagnetic behaviour that can be exploited in environmental applications.
ISSN:2283-9216