Image-Based Cardiac Diagnosis With Machine Learning: A Review

Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build a...

Full description

Bibliographic Details
Main Authors: Carlos Martin-Isla, Victor M. Campello, Cristian Izquierdo, Zahra Raisi-Estabragh, Bettina Baeßler, Steffen E. Petersen, Karim Lekadir
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-01-01
Series:Frontiers in Cardiovascular Medicine
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/full
id doaj-3c11d48299da4d2fa39d9dfb8fc08fc8
record_format Article
spelling doaj-3c11d48299da4d2fa39d9dfb8fc08fc82020-11-25T00:13:39ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2020-01-01710.3389/fcvm.2020.00001509311Image-Based Cardiac Diagnosis With Machine Learning: A ReviewCarlos Martin-Isla0Victor M. Campello1Cristian Izquierdo2Zahra Raisi-Estabragh3Zahra Raisi-Estabragh4Bettina Baeßler5Steffen E. Petersen6Steffen E. Petersen7Karim Lekadir8Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainBarts Heart Centre, Barts Health NHS Trust, London, United KingdomWilliam Harvey Research Institute, Queen Mary University of London, London, United KingdomDepartment of Diagnostic & Interventional Radiology, University Hospital Zurich, Zurich, SwitzerlandBarts Heart Centre, Barts Health NHS Trust, London, United KingdomWilliam Harvey Research Institute, Queen Mary University of London, London, United KingdomDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainCardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs.https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/fullcardiovascular diseaseautomated diagnosiscardiac imagingartificial intelligencemachine learningdeep learning
collection DOAJ
language English
format Article
sources DOAJ
author Carlos Martin-Isla
Victor M. Campello
Cristian Izquierdo
Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Bettina Baeßler
Steffen E. Petersen
Steffen E. Petersen
Karim Lekadir
spellingShingle Carlos Martin-Isla
Victor M. Campello
Cristian Izquierdo
Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Bettina Baeßler
Steffen E. Petersen
Steffen E. Petersen
Karim Lekadir
Image-Based Cardiac Diagnosis With Machine Learning: A Review
Frontiers in Cardiovascular Medicine
cardiovascular disease
automated diagnosis
cardiac imaging
artificial intelligence
machine learning
deep learning
author_facet Carlos Martin-Isla
Victor M. Campello
Cristian Izquierdo
Zahra Raisi-Estabragh
Zahra Raisi-Estabragh
Bettina Baeßler
Steffen E. Petersen
Steffen E. Petersen
Karim Lekadir
author_sort Carlos Martin-Isla
title Image-Based Cardiac Diagnosis With Machine Learning: A Review
title_short Image-Based Cardiac Diagnosis With Machine Learning: A Review
title_full Image-Based Cardiac Diagnosis With Machine Learning: A Review
title_fullStr Image-Based Cardiac Diagnosis With Machine Learning: A Review
title_full_unstemmed Image-Based Cardiac Diagnosis With Machine Learning: A Review
title_sort image-based cardiac diagnosis with machine learning: a review
publisher Frontiers Media S.A.
series Frontiers in Cardiovascular Medicine
issn 2297-055X
publishDate 2020-01-01
description Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs.
topic cardiovascular disease
automated diagnosis
cardiac imaging
artificial intelligence
machine learning
deep learning
url https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/full
work_keys_str_mv AT carlosmartinisla imagebasedcardiacdiagnosiswithmachinelearningareview
AT victormcampello imagebasedcardiacdiagnosiswithmachinelearningareview
AT cristianizquierdo imagebasedcardiacdiagnosiswithmachinelearningareview
AT zahraraisiestabragh imagebasedcardiacdiagnosiswithmachinelearningareview
AT zahraraisiestabragh imagebasedcardiacdiagnosiswithmachinelearningareview
AT bettinabaeßler imagebasedcardiacdiagnosiswithmachinelearningareview
AT steffenepetersen imagebasedcardiacdiagnosiswithmachinelearningareview
AT steffenepetersen imagebasedcardiacdiagnosiswithmachinelearningareview
AT karimlekadir imagebasedcardiacdiagnosiswithmachinelearningareview
_version_ 1725393763746971648