Image-Based Cardiac Diagnosis With Machine Learning: A Review
Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build a...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-01-01
|
Series: | Frontiers in Cardiovascular Medicine |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/full |
id |
doaj-3c11d48299da4d2fa39d9dfb8fc08fc8 |
---|---|
record_format |
Article |
spelling |
doaj-3c11d48299da4d2fa39d9dfb8fc08fc82020-11-25T00:13:39ZengFrontiers Media S.A.Frontiers in Cardiovascular Medicine2297-055X2020-01-01710.3389/fcvm.2020.00001509311Image-Based Cardiac Diagnosis With Machine Learning: A ReviewCarlos Martin-Isla0Victor M. Campello1Cristian Izquierdo2Zahra Raisi-Estabragh3Zahra Raisi-Estabragh4Bettina Baeßler5Steffen E. Petersen6Steffen E. Petersen7Karim Lekadir8Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainBarts Heart Centre, Barts Health NHS Trust, London, United KingdomWilliam Harvey Research Institute, Queen Mary University of London, London, United KingdomDepartment of Diagnostic & Interventional Radiology, University Hospital Zurich, Zurich, SwitzerlandBarts Heart Centre, Barts Health NHS Trust, London, United KingdomWilliam Harvey Research Institute, Queen Mary University of London, London, United KingdomDepartament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, SpainCardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs.https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/fullcardiovascular diseaseautomated diagnosiscardiac imagingartificial intelligencemachine learningdeep learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carlos Martin-Isla Victor M. Campello Cristian Izquierdo Zahra Raisi-Estabragh Zahra Raisi-Estabragh Bettina Baeßler Steffen E. Petersen Steffen E. Petersen Karim Lekadir |
spellingShingle |
Carlos Martin-Isla Victor M. Campello Cristian Izquierdo Zahra Raisi-Estabragh Zahra Raisi-Estabragh Bettina Baeßler Steffen E. Petersen Steffen E. Petersen Karim Lekadir Image-Based Cardiac Diagnosis With Machine Learning: A Review Frontiers in Cardiovascular Medicine cardiovascular disease automated diagnosis cardiac imaging artificial intelligence machine learning deep learning |
author_facet |
Carlos Martin-Isla Victor M. Campello Cristian Izquierdo Zahra Raisi-Estabragh Zahra Raisi-Estabragh Bettina Baeßler Steffen E. Petersen Steffen E. Petersen Karim Lekadir |
author_sort |
Carlos Martin-Isla |
title |
Image-Based Cardiac Diagnosis With Machine Learning: A Review |
title_short |
Image-Based Cardiac Diagnosis With Machine Learning: A Review |
title_full |
Image-Based Cardiac Diagnosis With Machine Learning: A Review |
title_fullStr |
Image-Based Cardiac Diagnosis With Machine Learning: A Review |
title_full_unstemmed |
Image-Based Cardiac Diagnosis With Machine Learning: A Review |
title_sort |
image-based cardiac diagnosis with machine learning: a review |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Cardiovascular Medicine |
issn |
2297-055X |
publishDate |
2020-01-01 |
description |
Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs. |
topic |
cardiovascular disease automated diagnosis cardiac imaging artificial intelligence machine learning deep learning |
url |
https://www.frontiersin.org/article/10.3389/fcvm.2020.00001/full |
work_keys_str_mv |
AT carlosmartinisla imagebasedcardiacdiagnosiswithmachinelearningareview AT victormcampello imagebasedcardiacdiagnosiswithmachinelearningareview AT cristianizquierdo imagebasedcardiacdiagnosiswithmachinelearningareview AT zahraraisiestabragh imagebasedcardiacdiagnosiswithmachinelearningareview AT zahraraisiestabragh imagebasedcardiacdiagnosiswithmachinelearningareview AT bettinabaeßler imagebasedcardiacdiagnosiswithmachinelearningareview AT steffenepetersen imagebasedcardiacdiagnosiswithmachinelearningareview AT steffenepetersen imagebasedcardiacdiagnosiswithmachinelearningareview AT karimlekadir imagebasedcardiacdiagnosiswithmachinelearningareview |
_version_ |
1725393763746971648 |