Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset

<p>A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3&thinsp;km). Even when clouds are thick enough to attenuate the lidar beam (op...

Full description

Bibliographic Details
Main Authors: J. Mülmenstädt, O. Sourdeval, D. S. Henderson, T. S. L'Ecuyer, C. Unglaub, L. Jungandreas, C. Böhm, L. M. Russell, J. Quaas
Format: Article
Language:English
Published: Copernicus Publications 2018-12-01
Series:Earth System Science Data
Online Access:https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf
id doaj-3c4c74d5753b40db91ba90f9ea8ed566
record_format Article
spelling doaj-3c4c74d5753b40db91ba90f9ea8ed5662020-11-25T00:58:10ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162018-12-01102279229310.5194/essd-10-2279-2018Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and datasetJ. Mülmenstädt0O. Sourdeval1D. S. Henderson2T. S. L'Ecuyer3C. Unglaub4L. Jungandreas5C. Böhm6L. M. Russell7J. Quaas8Institute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyUniversity of Wisconsin at Madison, Madison, Wisconsin, USAUniversity of Wisconsin at Madison, Madison, Wisconsin, USAInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute for Geophysics and Meteorology, Universität zu Köln, Cologne, GermanyScripps Institution of Oceanography, University of California, San Diego, San Diego, California, USAInstitute of Meteorology, Universität Leipzig, Leipzig, Germany<p>A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3&thinsp;km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness <i>τ</i><i>≳</i>5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second statistically independent ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10&thinsp;%. Geographic distributions of cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially smaller than the 480&thinsp;m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud base dataset is available at <a href="https://doi.org/10.1594/WDCC/CBASE" target="_blank">https://doi.org/10.1594/WDCC/CBASE</a>.</p>https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Mülmenstädt
O. Sourdeval
D. S. Henderson
T. S. L'Ecuyer
C. Unglaub
L. Jungandreas
C. Böhm
L. M. Russell
J. Quaas
spellingShingle J. Mülmenstädt
O. Sourdeval
D. S. Henderson
T. S. L'Ecuyer
C. Unglaub
L. Jungandreas
C. Böhm
L. M. Russell
J. Quaas
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
Earth System Science Data
author_facet J. Mülmenstädt
O. Sourdeval
D. S. Henderson
T. S. L'Ecuyer
C. Unglaub
L. Jungandreas
C. Böhm
L. M. Russell
J. Quaas
author_sort J. Mülmenstädt
title Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
title_short Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
title_full Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
title_fullStr Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
title_full_unstemmed Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
title_sort using caliop to estimate cloud-field base height and its uncertainty: the cloud base altitude spatial extrapolator (cbase) algorithm and dataset
publisher Copernicus Publications
series Earth System Science Data
issn 1866-3508
1866-3516
publishDate 2018-12-01
description <p>A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3&thinsp;km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness <i>τ</i><i>≳</i>5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second statistically independent ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10&thinsp;%. Geographic distributions of cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially smaller than the 480&thinsp;m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud base dataset is available at <a href="https://doi.org/10.1594/WDCC/CBASE" target="_blank">https://doi.org/10.1594/WDCC/CBASE</a>.</p>
url https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf
work_keys_str_mv AT jmulmenstadt usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT osourdeval usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT dshenderson usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT tslecuyer usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT cunglaub usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT ljungandreas usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT cbohm usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT lmrussell usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
AT jquaas usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset
_version_ 1725221183021907968