Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset
<p>A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3 km). Even when clouds are thick enough to attenuate the lidar beam (op...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-12-01
|
Series: | Earth System Science Data |
Online Access: | https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf |
id |
doaj-3c4c74d5753b40db91ba90f9ea8ed566 |
---|---|
record_format |
Article |
spelling |
doaj-3c4c74d5753b40db91ba90f9ea8ed5662020-11-25T00:58:10ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162018-12-01102279229310.5194/essd-10-2279-2018Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and datasetJ. Mülmenstädt0O. Sourdeval1D. S. Henderson2T. S. L'Ecuyer3C. Unglaub4L. Jungandreas5C. Böhm6L. M. Russell7J. Quaas8Institute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyUniversity of Wisconsin at Madison, Madison, Wisconsin, USAUniversity of Wisconsin at Madison, Madison, Wisconsin, USAInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute of Meteorology, Universität Leipzig, Leipzig, GermanyInstitute for Geophysics and Meteorology, Universität zu Köln, Cologne, GermanyScripps Institution of Oceanography, University of California, San Diego, San Diego, California, USAInstitute of Meteorology, Universität Leipzig, Leipzig, Germany<p>A technique is presented that uses attenuated backscatter profiles from the CALIOP satellite lidar to estimate cloud base heights of lower-troposphere liquid clouds (cloud base height below approximately 3 km). Even when clouds are thick enough to attenuate the lidar beam (optical thickness <i>τ</i><i>≳</i>5), the technique provides cloud base heights by treating the cloud base height of nearby thinner clouds as representative of the surrounding cloud field. Using ground-based ceilometer data, uncertainty estimates for the cloud base height product at retrieval resolution are derived as a function of various properties of the CALIOP lidar profiles. Evaluation of the predicted cloud base heights and their predicted uncertainty using a second statistically independent ceilometer dataset shows that cloud base heights and uncertainties are biased by less than 10 %. Geographic distributions of cloud base height and its uncertainty are presented. In some regions, the uncertainty is found to be substantially smaller than the 480 m uncertainty assumed in the A-Train surface downwelling longwave estimate, potentially permitting the most uncertain of the radiative fluxes in the climate system to be better constrained. The cloud base dataset is available at <a href="https://doi.org/10.1594/WDCC/CBASE" target="_blank">https://doi.org/10.1594/WDCC/CBASE</a>.</p>https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Mülmenstädt O. Sourdeval D. S. Henderson T. S. L'Ecuyer C. Unglaub L. Jungandreas C. Böhm L. M. Russell J. Quaas |
spellingShingle |
J. Mülmenstädt O. Sourdeval D. S. Henderson T. S. L'Ecuyer C. Unglaub L. Jungandreas C. Böhm L. M. Russell J. Quaas Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset Earth System Science Data |
author_facet |
J. Mülmenstädt O. Sourdeval D. S. Henderson T. S. L'Ecuyer C. Unglaub L. Jungandreas C. Böhm L. M. Russell J. Quaas |
author_sort |
J. Mülmenstädt |
title |
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset |
title_short |
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset |
title_full |
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset |
title_fullStr |
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset |
title_full_unstemmed |
Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset |
title_sort |
using caliop to estimate cloud-field base height and its uncertainty: the cloud base altitude spatial extrapolator (cbase) algorithm and dataset |
publisher |
Copernicus Publications |
series |
Earth System Science Data |
issn |
1866-3508 1866-3516 |
publishDate |
2018-12-01 |
description |
<p>A technique is presented that uses attenuated backscatter profiles from the
CALIOP satellite lidar to estimate cloud base heights of lower-troposphere
liquid clouds (cloud base height below approximately 3 km). Even when clouds are
thick enough to attenuate the lidar beam (optical thickness <i>τ</i><i>≳</i>5),
the technique provides cloud base heights by treating the cloud base height of
nearby thinner clouds as representative of the surrounding cloud field. Using
ground-based ceilometer data, uncertainty estimates for the cloud base height
product at retrieval resolution are derived as a function of various
properties of the CALIOP lidar profiles. Evaluation of the predicted cloud
base heights and their predicted uncertainty using a second statistically
independent ceilometer dataset shows that cloud base heights and
uncertainties are biased by less than 10 %. Geographic distributions of cloud
base height and its uncertainty are presented. In some regions, the
uncertainty is found to be substantially smaller than the 480 m
uncertainty assumed in the A-Train surface downwelling longwave estimate,
potentially permitting the most uncertain of the radiative fluxes in the
climate system to be better constrained. The cloud base dataset is available
at <a href="https://doi.org/10.1594/WDCC/CBASE" target="_blank">https://doi.org/10.1594/WDCC/CBASE</a>.</p> |
url |
https://www.earth-syst-sci-data.net/10/2279/2018/essd-10-2279-2018.pdf |
work_keys_str_mv |
AT jmulmenstadt usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT osourdeval usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT dshenderson usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT tslecuyer usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT cunglaub usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT ljungandreas usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT cbohm usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT lmrussell usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset AT jquaas usingcalioptoestimatecloudfieldbaseheightanditsuncertaintythecloudbasealtitudespatialextrapolatorcbasealgorithmanddataset |
_version_ |
1725221183021907968 |