Determining the volumetric characteristics of a passive linear electro-magnetic damper for vehicle applications

Previous research has shown that passive electromagnetic damping could be feasible for automotive applications, but there would be a severe weight penalty, particularly in light weight vehicles. With modern advances in permanent magnets the feasibility of passive electromagnetic dampers is re-examin...

Full description

Bibliographic Details
Main Authors: A. Fow, M. Duke
Format: Article
Language:English
Published: Taylor & Francis Group 2017-01-01
Series:Cogent Engineering
Subjects:
Online Access:http://dx.doi.org/10.1080/23311916.2017.1374160
Description
Summary:Previous research has shown that passive electromagnetic damping could be feasible for automotive applications, but there would be a severe weight penalty, particularly in light weight vehicles. With modern advances in permanent magnets the feasibility of passive electromagnetic dampers is re-examined. A model of a permanent magnet and coil system is developed and validated in small scale. This magnet model is used to model a dynamic damper system which is again tested. This dynamic model is then scaled up to a two degree of freedom system to determine the damping for a quarter car model. Two damper designs are created each of which would produce a damping coefficient of 1,600 Ns/m. The proposed dampers require more than three times the volume of the equivalent hydraulic dampers.
ISSN:2331-1916