Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications
Abstract Background Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor dr...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-10-01
|
Series: | Journal of Nanobiotechnology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12951-017-0309-y |
id |
doaj-3c7845e333044ed4952d41343f905769 |
---|---|
record_format |
Article |
spelling |
doaj-3c7845e333044ed4952d41343f9057692020-11-25T02:27:34ZengBMCJournal of Nanobiotechnology1477-31552017-10-0115111810.1186/s12951-017-0309-yDual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applicationsYuan Wang0Xue-Yin Zhang1Yan-Ling Luo2Feng Xu3Ya-Shao Chen4Yu-Yu Su5Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityKey Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityAbstract Background Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. Results Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) block copolymers (Fe3O4-g-PAA-b-PMAEFC) were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core–shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species. Conclusion This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system.http://link.springer.com/article/10.1186/s12951-017-0309-yBlock copolymersMagnetic propertiesRedox propertiesSelf-assemblyStimuli-responsiveness |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuan Wang Xue-Yin Zhang Yan-Ling Luo Feng Xu Ya-Shao Chen Yu-Yu Su |
spellingShingle |
Yuan Wang Xue-Yin Zhang Yan-Ling Luo Feng Xu Ya-Shao Chen Yu-Yu Su Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications Journal of Nanobiotechnology Block copolymers Magnetic properties Redox properties Self-assembly Stimuli-responsiveness |
author_facet |
Yuan Wang Xue-Yin Zhang Yan-Ling Luo Feng Xu Ya-Shao Chen Yu-Yu Su |
author_sort |
Yuan Wang |
title |
Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications |
title_short |
Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications |
title_full |
Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications |
title_fullStr |
Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications |
title_full_unstemmed |
Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications |
title_sort |
dual stimuli-responsive fe3o4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface raft synthesis, self-assembly and drug release applications |
publisher |
BMC |
series |
Journal of Nanobiotechnology |
issn |
1477-3155 |
publishDate |
2017-10-01 |
description |
Abstract Background Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. Results Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) block copolymers (Fe3O4-g-PAA-b-PMAEFC) were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core–shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species. Conclusion This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system. |
topic |
Block copolymers Magnetic properties Redox properties Self-assembly Stimuli-responsiveness |
url |
http://link.springer.com/article/10.1186/s12951-017-0309-y |
work_keys_str_mv |
AT yuanwang dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications AT xueyinzhang dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications AT yanlingluo dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications AT fengxu dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications AT yashaochen dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications AT yuyusu dualstimuliresponsivefe3o4graftpolyacrylicacidblockpoly2methacryloyloxyethylferrocenecarboxylatecopolymermicromicellessurfaceraftsynthesisselfassemblyanddrugreleaseapplications |
_version_ |
1724842329072730112 |