Weighted quantitative isoperimetric inequalities in the Grushin space R h + 1 ${R}^{h+1}$ with density | x | p $|x|^{p}$
Abstract In this paper, we prove weighted quantitative isoperimetric inequalities for the set E α = { ( x , y ) ∈ R h + 1 : | y | < ∫ arcsin | x | π 2 sin α + 1 ( t ) d t , | x | < 1 } $E_{\alpha}= \{(x,y)\in {R}^{h+1}: \vert y \vert <\int_{\arcsin \vert x \vert }^{\frac{\pi}{2}}\sin^{\alph...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-07-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1437-5 |