Weighted quantitative isoperimetric inequalities in the Grushin space R h + 1 ${R}^{h+1}$ with density | x | p $|x|^{p}$

Abstract In this paper, we prove weighted quantitative isoperimetric inequalities for the set E α = { ( x , y ) ∈ R h + 1 : | y | < ∫ arcsin | x | π 2 sin α + 1 ( t ) d t , | x | < 1 } $E_{\alpha}= \{(x,y)\in {R}^{h+1}: \vert y \vert <\int_{\arcsin \vert x \vert }^{\frac{\pi}{2}}\sin^{\alph...

Full description

Bibliographic Details
Main Authors: Guoqing He, Peibiao Zhao
Format: Article
Language:English
Published: SpringerOpen 2017-07-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1437-5