Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
As a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-06-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf |
id |
doaj-3d42ed88c3f14e80bf806a7e1a3ac352 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Vicca M. Bahn M. Estiarte E. E. van Loon R. Vargas G. Alberti P. Ambus M. A. Arain C. Beier L. P. Bentley W. Borken N. Buchmann S. L. Collins G. de Dato J. S. Dukes C. Escolar P. Fay G. Guidolotti P. J. Hanson A. Kahmen G. Kröel-Dulay T. Ladreiter-Knauss K. S. Larsen E. Lellei-Kovacs E. Lebrija-Trejos F. T. Maestre S. Marhan M. Marshall P. Meir Y. Miao J. Muhr P. A. Niklaus R. Ogaya J. Peñuelas C. Poll L. E. Rustad K. Savage A. Schindlbacher I. K. Schmidt A. R. Smith E. D. Sotta V. Suseela A. Tietema N. van Gestel O. van Straaten S. Wan U. Weber I. A. Janssens |
spellingShingle |
S. Vicca M. Bahn M. Estiarte E. E. van Loon R. Vargas G. Alberti P. Ambus M. A. Arain C. Beier L. P. Bentley W. Borken N. Buchmann S. L. Collins G. de Dato J. S. Dukes C. Escolar P. Fay G. Guidolotti P. J. Hanson A. Kahmen G. Kröel-Dulay T. Ladreiter-Knauss K. S. Larsen E. Lellei-Kovacs E. Lebrija-Trejos F. T. Maestre S. Marhan M. Marshall P. Meir Y. Miao J. Muhr P. A. Niklaus R. Ogaya J. Peñuelas C. Poll L. E. Rustad K. Savage A. Schindlbacher I. K. Schmidt A. R. Smith E. D. Sotta V. Suseela A. Tietema N. van Gestel O. van Straaten S. Wan U. Weber I. A. Janssens Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments Biogeosciences |
author_facet |
S. Vicca M. Bahn M. Estiarte E. E. van Loon R. Vargas G. Alberti P. Ambus M. A. Arain C. Beier L. P. Bentley W. Borken N. Buchmann S. L. Collins G. de Dato J. S. Dukes C. Escolar P. Fay G. Guidolotti P. J. Hanson A. Kahmen G. Kröel-Dulay T. Ladreiter-Knauss K. S. Larsen E. Lellei-Kovacs E. Lebrija-Trejos F. T. Maestre S. Marhan M. Marshall P. Meir Y. Miao J. Muhr P. A. Niklaus R. Ogaya J. Peñuelas C. Poll L. E. Rustad K. Savage A. Schindlbacher I. K. Schmidt A. R. Smith E. D. Sotta V. Suseela A. Tietema N. van Gestel O. van Straaten S. Wan U. Weber I. A. Janssens |
author_sort |
S. Vicca |
title |
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments |
title_short |
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments |
title_full |
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments |
title_fullStr |
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments |
title_full_unstemmed |
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments |
title_sort |
can current moisture responses predict soil co<sub>2</sub> efflux under altered precipitation regimes? a synthesis of manipulation experiments |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2014-06-01 |
description |
As a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being
increasingly studied to improve our mechanistic understanding of this
important carbon flux. Predicting ecosystem responses to climate change
often depends on extrapolation of current relationships between ecosystem
processes and their climatic drivers to conditions not yet experienced by
the ecosystem. This raises the question of to what extent these relationships
remain unaltered beyond the current climatic window for which observations
are available to constrain the relationships. Here, we evaluate whether
current responses of SCE to fluctuations in soil temperature and soil water
content can be used to predict SCE under altered rainfall patterns. Of the
58 experiments for which we gathered SCE data, 20 were discarded because
either too few data were available or inconsistencies precluded their
incorporation in the analyses. The 38 remaining experiments were used to
test the hypothesis that a model parameterized with data from the control
plots (using soil temperature and water content as predictor variables)
could adequately predict SCE measured in the manipulated treatment. Only for
7 of these 38 experiments was this hypothesis rejected. Importantly,
these were the experiments with the most reliable data sets, i.e., those
providing high-frequency measurements of SCE. Regression tree analysis
demonstrated that our hypothesis could be rejected only for experiments with
measurement intervals of less than 11 days, and was not rejected for any of
the 24 experiments with larger measurement intervals. This highlights the
importance of high-frequency measurements when studying effects of altered
precipitation on SCE, probably because infrequent measurement schemes have
insufficient capacity to detect shifts in the climate dependencies of SCE.
Hence, the most justified answer to the question of whether current moisture
responses of SCE can be extrapolated to predict SCE under altered
precipitation regimes is "no" – as based on the most reliable data sets
available. We strongly recommend that future experiments focus more strongly
on establishing response functions across a broader range of precipitation
regimes and soil moisture conditions. Such experiments should make accurate
measurements of water availability, should conduct high-frequency SCE
measurements, and should consider both instantaneous responses and the
potential legacy effects of climate extremes. This is important, because
with the novel approach presented here, we demonstrated that, at least for
some ecosystems, current moisture responses could not be extrapolated to
predict SCE under altered rainfall conditions. |
url |
http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf |
work_keys_str_mv |
AT svicca cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT mbahn cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT mestiarte cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT eevanloon cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT rvargas cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT galberti cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT pambus cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT maarain cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT cbeier cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT lpbentley cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT wborken cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT nbuchmann cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT slcollins cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT gdedato cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT jsdukes cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT cescolar cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT pfay cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT gguidolotti cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT pjhanson cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT akahmen cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT gkroeldulay cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT tladreiterknauss cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT kslarsen cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT elelleikovacs cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT elebrijatrejos cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT ftmaestre cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT smarhan cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT mmarshall cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT pmeir cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT ymiao cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT jmuhr cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT paniklaus cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT rogaya cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT jpenuelas cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT cpoll cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT lerustad cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT ksavage cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT aschindlbacher cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT ikschmidt cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT arsmith cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT edsotta cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT vsuseela cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT atietema cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT nvangestel cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT ovanstraaten cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT swan cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT uweber cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments AT iajanssens cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments |
_version_ |
1725714885162041344 |
spelling |
doaj-3d42ed88c3f14e80bf806a7e1a3ac3522020-11-24T22:38:03ZengCopernicus PublicationsBiogeosciences1726-41701726-41892014-06-0111112991301310.5194/bg-11-2991-2014Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experimentsS. Vicca0M. Bahn1M. Estiarte2E. E. van Loon3R. Vargas4G. Alberti5P. Ambus6M. A. Arain7C. Beier8L. P. Bentley9W. Borken10N. Buchmann11S. L. Collins12G. de Dato13J. S. Dukes14C. Escolar15P. Fay16G. Guidolotti17P. J. Hanson18A. Kahmen19G. Kröel-Dulay20T. Ladreiter-Knauss21K. S. Larsen22E. Lellei-Kovacs23E. Lebrija-Trejos24F. T. Maestre25S. Marhan26M. Marshall27P. Meir28Y. Miao29J. Muhr30P. A. Niklaus31R. Ogaya32J. Peñuelas33C. Poll34L. E. Rustad35K. Savage36A. Schindlbacher37I. K. Schmidt38A. R. Smith39E. D. Sotta40V. Suseela41A. Tietema42N. van Gestel43O. van Straaten44S. Wan45U. Weber46I. A. Janssens47Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumInstitute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, AustriaCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the NetherlandsDepartment of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware, Newark, DE, USAUniversity of Udine, via delle Scienze 206, Udine, ItalyDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkMcMaster Center for Climate Change and School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, CanadaDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkDepartment of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USASoil Ecology, University Bayreuth, Dr.-Hans-Frisch-Str. 1–3, 95448 Bayreuth, GermanyDepartment of Environmental Systems Science, ETH Zurich, Zurich, SwitzerlandDepartment of Biology, University of New Mexico, Albuquerque, NM 87131, USADepartment for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, ItalyDepartment of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USAÁrea de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, SpainUSDA ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USADepartment for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, ItalyOak Ridge National Laboratory, Oak Ridge, TN 37831, USAInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, SwitzerlandMTA Centre for Ecological Research, 2–4, Alkotmany u., 2163-Vácrátót, HungaryInstitute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, AustriaDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkMTA Centre for Ecological Research, 2–4, Alkotmany u., 2163-Vácrátót, HungaryDepartment of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, IsraelÁrea de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, SpainInstitute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, GermanyCentre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UKSchool of Geosciences, University of Edinburgh, Edinburgh, UKState Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, ChinaMax Planck Institute of Biogeochemistry, Department of Biogeochemical Processes, 07701 Jena, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, SwitzerlandCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainInstitute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, GermanyUSFS Northern Research Station, 271 Mast Road, Durham, NH 03824, USAThe Woods Hole Research Center, 149 Woods Hole Rd, Falmouth, MA 02540, USADepartment of Forest Ecology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape – BFW, A-1131 Vienna, AustriaDepartment of Geosciences and Natural Resource Management, Copenhagen University, DenmarkCentre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UKEmbrapa Amapá Caixa Postal 10, CEP 68906-970, Macapá AP, BrazilDepartment of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USAInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the NetherlandsDepartment of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USABuesgen Institute, Soil Science of Tropical and Subtropical Ecosystems, Georg-August- University of Goettingen, Buesgenweg 2, 37077 Goettingen, GermanyState Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, ChinaDepartment of Biogeochemical Integration (BGI), Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, GermanyResearch Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumAs a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is "no" – as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions.http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf |