Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments

As a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between...

Full description

Bibliographic Details
Main Authors: S. Vicca, M. Bahn, M. Estiarte, E. E. van Loon, R. Vargas, G. Alberti, P. Ambus, M. A. Arain, C. Beier, L. P. Bentley, W. Borken, N. Buchmann, S. L. Collins, G. de Dato, J. S. Dukes, C. Escolar, P. Fay, G. Guidolotti, P. J. Hanson, A. Kahmen, G. Kröel-Dulay, T. Ladreiter-Knauss, K. S. Larsen, E. Lellei-Kovacs, E. Lebrija-Trejos, F. T. Maestre, S. Marhan, M. Marshall, P. Meir, Y. Miao, J. Muhr, P. A. Niklaus, R. Ogaya, J. Peñuelas, C. Poll, L. E. Rustad, K. Savage, A. Schindlbacher, I. K. Schmidt, A. R. Smith, E. D. Sotta, V. Suseela, A. Tietema, N. van Gestel, O. van Straaten, S. Wan, U. Weber, I. A. Janssens
Format: Article
Language:English
Published: Copernicus Publications 2014-06-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf
id doaj-3d42ed88c3f14e80bf806a7e1a3ac352
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author S. Vicca
M. Bahn
M. Estiarte
E. E. van Loon
R. Vargas
G. Alberti
P. Ambus
M. A. Arain
C. Beier
L. P. Bentley
W. Borken
N. Buchmann
S. L. Collins
G. de Dato
J. S. Dukes
C. Escolar
P. Fay
G. Guidolotti
P. J. Hanson
A. Kahmen
G. Kröel-Dulay
T. Ladreiter-Knauss
K. S. Larsen
E. Lellei-Kovacs
E. Lebrija-Trejos
F. T. Maestre
S. Marhan
M. Marshall
P. Meir
Y. Miao
J. Muhr
P. A. Niklaus
R. Ogaya
J. Peñuelas
C. Poll
L. E. Rustad
K. Savage
A. Schindlbacher
I. K. Schmidt
A. R. Smith
E. D. Sotta
V. Suseela
A. Tietema
N. van Gestel
O. van Straaten
S. Wan
U. Weber
I. A. Janssens
spellingShingle S. Vicca
M. Bahn
M. Estiarte
E. E. van Loon
R. Vargas
G. Alberti
P. Ambus
M. A. Arain
C. Beier
L. P. Bentley
W. Borken
N. Buchmann
S. L. Collins
G. de Dato
J. S. Dukes
C. Escolar
P. Fay
G. Guidolotti
P. J. Hanson
A. Kahmen
G. Kröel-Dulay
T. Ladreiter-Knauss
K. S. Larsen
E. Lellei-Kovacs
E. Lebrija-Trejos
F. T. Maestre
S. Marhan
M. Marshall
P. Meir
Y. Miao
J. Muhr
P. A. Niklaus
R. Ogaya
J. Peñuelas
C. Poll
L. E. Rustad
K. Savage
A. Schindlbacher
I. K. Schmidt
A. R. Smith
E. D. Sotta
V. Suseela
A. Tietema
N. van Gestel
O. van Straaten
S. Wan
U. Weber
I. A. Janssens
Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
Biogeosciences
author_facet S. Vicca
M. Bahn
M. Estiarte
E. E. van Loon
R. Vargas
G. Alberti
P. Ambus
M. A. Arain
C. Beier
L. P. Bentley
W. Borken
N. Buchmann
S. L. Collins
G. de Dato
J. S. Dukes
C. Escolar
P. Fay
G. Guidolotti
P. J. Hanson
A. Kahmen
G. Kröel-Dulay
T. Ladreiter-Knauss
K. S. Larsen
E. Lellei-Kovacs
E. Lebrija-Trejos
F. T. Maestre
S. Marhan
M. Marshall
P. Meir
Y. Miao
J. Muhr
P. A. Niklaus
R. Ogaya
J. Peñuelas
C. Poll
L. E. Rustad
K. Savage
A. Schindlbacher
I. K. Schmidt
A. R. Smith
E. D. Sotta
V. Suseela
A. Tietema
N. van Gestel
O. van Straaten
S. Wan
U. Weber
I. A. Janssens
author_sort S. Vicca
title Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
title_short Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
title_full Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
title_fullStr Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
title_full_unstemmed Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experiments
title_sort can current moisture responses predict soil co<sub>2</sub> efflux under altered precipitation regimes? a synthesis of manipulation experiments
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2014-06-01
description As a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is "no" – as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions.
url http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf
work_keys_str_mv AT svicca cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT mbahn cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT mestiarte cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT eevanloon cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT rvargas cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT galberti cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT pambus cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT maarain cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT cbeier cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT lpbentley cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT wborken cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT nbuchmann cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT slcollins cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT gdedato cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT jsdukes cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT cescolar cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT pfay cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT gguidolotti cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT pjhanson cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT akahmen cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT gkroeldulay cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT tladreiterknauss cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT kslarsen cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT elelleikovacs cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT elebrijatrejos cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT ftmaestre cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT smarhan cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT mmarshall cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT pmeir cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT ymiao cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT jmuhr cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT paniklaus cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT rogaya cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT jpenuelas cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT cpoll cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT lerustad cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT ksavage cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT aschindlbacher cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT ikschmidt cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT arsmith cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT edsotta cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT vsuseela cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT atietema cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT nvangestel cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT ovanstraaten cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT swan cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT uweber cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
AT iajanssens cancurrentmoistureresponsespredictsoilcosub2subeffluxunderalteredprecipitationregimesasynthesisofmanipulationexperiments
_version_ 1725714885162041344
spelling doaj-3d42ed88c3f14e80bf806a7e1a3ac3522020-11-24T22:38:03ZengCopernicus PublicationsBiogeosciences1726-41701726-41892014-06-0111112991301310.5194/bg-11-2991-2014Can current moisture responses predict soil CO<sub>2</sub> efflux under altered precipitation regimes? A synthesis of manipulation experimentsS. Vicca0M. Bahn1M. Estiarte2E. E. van Loon3R. Vargas4G. Alberti5P. Ambus6M. A. Arain7C. Beier8L. P. Bentley9W. Borken10N. Buchmann11S. L. Collins12G. de Dato13J. S. Dukes14C. Escolar15P. Fay16G. Guidolotti17P. J. Hanson18A. Kahmen19G. Kröel-Dulay20T. Ladreiter-Knauss21K. S. Larsen22E. Lellei-Kovacs23E. Lebrija-Trejos24F. T. Maestre25S. Marhan26M. Marshall27P. Meir28Y. Miao29J. Muhr30P. A. Niklaus31R. Ogaya32J. Peñuelas33C. Poll34L. E. Rustad35K. Savage36A. Schindlbacher37I. K. Schmidt38A. R. Smith39E. D. Sotta40V. Suseela41A. Tietema42N. van Gestel43O. van Straaten44S. Wan45U. Weber46I. A. Janssens47Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumInstitute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, AustriaCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the NetherlandsDepartment of Plant and Soil Sciences, Delaware Environmental Institute, University of Delaware, Newark, DE, USAUniversity of Udine, via delle Scienze 206, Udine, ItalyDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkMcMaster Center for Climate Change and School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, CanadaDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkDepartment of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USASoil Ecology, University Bayreuth, Dr.-Hans-Frisch-Str. 1&ndash;3, 95448 Bayreuth, GermanyDepartment of Environmental Systems Science, ETH Zurich, Zurich, SwitzerlandDepartment of Biology, University of New Mexico, Albuquerque, NM 87131, USADepartment for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, ItalyDepartment of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USAÁrea de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, SpainUSDA ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USADepartment for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, ItalyOak Ridge National Laboratory, Oak Ridge, TN 37831, USAInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, SwitzerlandMTA Centre for Ecological Research, 2&ndash;4, Alkotmany u., 2163-Vácrátót, HungaryInstitute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, AustriaDepartment of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DenmarkMTA Centre for Ecological Research, 2&ndash;4, Alkotmany u., 2163-Vácrátót, HungaryDepartment of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, IsraelÁrea de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, SpainInstitute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, GermanyCentre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UKSchool of Geosciences, University of Edinburgh, Edinburgh, UKState Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, ChinaMax Planck Institute of Biogeochemistry, Department of Biogeochemical Processes, 07701 Jena, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, SwitzerlandCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainCSIC, Global Ecology Unit, CREAF-CEAB-UAB, Cerdanyola del Vallés 08913, Catalonia, SpainInstitute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, GermanyUSFS Northern Research Station, 271 Mast Road, Durham, NH 03824, USAThe Woods Hole Research Center, 149 Woods Hole Rd, Falmouth, MA 02540, USADepartment of Forest Ecology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape – BFW, A-1131 Vienna, AustriaDepartment of Geosciences and Natural Resource Management, Copenhagen University, DenmarkCentre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UKEmbrapa Amapá Caixa Postal 10, CEP 68906-970, Macapá AP, BrazilDepartment of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USAInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the NetherlandsDepartment of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USABuesgen Institute, Soil Science of Tropical and Subtropical Ecosystems, Georg-August- University of Goettingen, Buesgenweg 2, 37077 Goettingen, GermanyState Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, ChinaDepartment of Biogeochemical Integration (BGI), Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, GermanyResearch Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumAs a key component of the carbon cycle, soil CO<sub>2</sub> efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is "no" – as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions.http://www.biogeosciences.net/11/2991/2014/bg-11-2991-2014.pdf