Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study

<p>The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC<span class="inline-formula"><sup>4</sup></span>RS) project included goals related to aerosol particle life cycle in convective regimes. Using th...

Full description

Bibliographic Details
Main Authors: J. S. Reid, D. J. Posselt, K. Kaku, R. A. Holz, G. Chen, E. W. Eloranta, R. E. Kuehn, S. Woods, J. Zhang, B. Anderson, T. P. Bui, G. S. Diskin, P. Minnis, M. J. Newchurch, S. Tanelli, C. R. Trepte, K. L. Thornhill, L. D. Ziemba
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/11413/2019/acp-19-11413-2019.pdf
id doaj-3d7d782560ad4adf913c0e84d52a5a73
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. S. Reid
D. J. Posselt
K. Kaku
R. A. Holz
G. Chen
E. W. Eloranta
R. E. Kuehn
S. Woods
J. Zhang
B. Anderson
T. P. Bui
G. S. Diskin
P. Minnis
P. Minnis
M. J. Newchurch
S. Tanelli
C. R. Trepte
K. L. Thornhill
L. D. Ziemba
spellingShingle J. S. Reid
D. J. Posselt
K. Kaku
R. A. Holz
G. Chen
E. W. Eloranta
R. E. Kuehn
S. Woods
J. Zhang
B. Anderson
T. P. Bui
G. S. Diskin
P. Minnis
P. Minnis
M. J. Newchurch
S. Tanelli
C. R. Trepte
K. L. Thornhill
L. D. Ziemba
Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
Atmospheric Chemistry and Physics
author_facet J. S. Reid
D. J. Posselt
K. Kaku
R. A. Holz
G. Chen
E. W. Eloranta
R. E. Kuehn
S. Woods
J. Zhang
B. Anderson
T. P. Bui
G. S. Diskin
P. Minnis
P. Minnis
M. J. Newchurch
S. Tanelli
C. R. Trepte
K. L. Thornhill
L. D. Ziemba
author_sort J. S. Reid
title Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
title_short Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
title_full Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
title_fullStr Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
title_full_unstemmed Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case study
title_sort observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a seac<sup>4</sup>rs case study
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-09-01
description <p>The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC<span class="inline-formula"><sup>4</sup></span>RS) project included goals related to aerosol particle life cycle in convective regimes. Using the University of Wisconsin High Spectral Resolution Lidar system at Huntsville, Alabama, USA, and the NASA DC-8 research aircraft, we investigate the altitude dependence of aerosol, water vapor and Altocumulus (Ac) properties in the free troposphere from a canonical 12 August 2013 convective storm case as a segue to a presentation of a mission-wide analysis. It stands to reason that any moisture detrainment from convection must have an associated aerosol layer. Modes of covariability between aerosol, water vapor and Ac are examined relative to the boundary layer entrainment zone, 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C level, and anvil, a region known to contain Ac clouds and a complex aerosol layering structure (Reid et al., 2017). Multiple aerosol layers in regions warmer than 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C were observed within the planetary boundary layer entrainment zone. At 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C there is a proclivity for aerosol and water vapor detrainment from storms, in association with melting level Ac shelves. Finally, at temperatures colder than 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, weak aerosol layers were identified above Cumulus congestus tops (<span class="inline-formula">∼0</span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">20</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="8d516c7f10428f65837c03e018b98af2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11413-2019-ie00001.svg" width="32pt" height="10pt" src="acp-19-11413-2019-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C). Stronger aerosol signals return in association with anvil outflow. In situ data suggest that detraining particles undergo aqueous-phase or heterogeneous chemical or microphysical transformations, while at the same time larger particles are being scavenged at higher altitudes leading to enhanced nucleation. We conclude by discussing hypotheses regarding links to aerosol emissions and potential indirect effects on Ac clouds.</p>
url https://www.atmos-chem-phys.net/19/11413/2019/acp-19-11413-2019.pdf
work_keys_str_mv AT jsreid observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT djposselt observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT kkaku observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT raholz observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT gchen observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT eweloranta observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT rekuehn observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT swoods observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT jzhang observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT banderson observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT tpbui observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT gsdiskin observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT pminnis observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT pminnis observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT mjnewchurch observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT stanelli observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT crtrepte observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT klthornhill observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
AT ldziemba observationsandhypothesesrelatedtolowtomiddlefreetroposphericaerosolwatervaporandaltocumuluscloudlayerswithinconvectiveweatherregimesaseacsup4suprscasestudy
_version_ 1725302770153553920
spelling doaj-3d7d782560ad4adf913c0e84d52a5a732020-11-25T00:37:04ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-09-0119114131144210.5194/acp-19-11413-2019Observations and hypotheses related to low to middle free tropospheric aerosol, water vapor and altocumulus cloud layers within convective weather regimes: a SEAC<sup>4</sup>RS case studyJ. S. Reid0D. J. Posselt1K. Kaku2R. A. Holz3G. Chen4E. W. Eloranta5R. E. Kuehn6S. Woods7J. Zhang8B. Anderson9T. P. Bui10G. S. Diskin11P. Minnis12P. Minnis13M. J. Newchurch14S. Tanelli15C. R. Trepte16K. L. Thornhill17L. D. Ziemba18US Naval Research Laboratory, Marine Meteorology Division Monterey, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAGeneral Dynamics Information Technology, Naval Research Laboratory, Monterey, CA, USASpace Sciences Engineering Center, University of Wisconsin, Madison, WI, USANASA Langley Research Center, Science Directorate, Hampton, VA, USASpace Sciences Engineering Center, University of Wisconsin, Madison, WI, USASpace Sciences Engineering Center, University of Wisconsin, Madison, WI, USASPEC Inc. Boulder, CO, USAUniversity of North Dakota, Department of Atmospheric Sciences, Grand Forks, ND, USANASA Langley Research Center, Science Directorate, Hampton, VA, USANASA Ames Research Center, Earth Science Division, Moffett Field, CA, USANASA Langley Research Center, Science Directorate, Hampton, VA, USANASA Langley Research Center, Science Directorate, Hampton, VA, USAnow at: Science Systems and Applications, Inc., Hampton, VA, USADepartment of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, AL, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USANASA Langley Research Center, Science Directorate, Hampton, VA, USANASA Langley Research Center, Science Directorate, Hampton, VA, USANASA Langley Research Center, Science Directorate, Hampton, VA, USA<p>The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC<span class="inline-formula"><sup>4</sup></span>RS) project included goals related to aerosol particle life cycle in convective regimes. Using the University of Wisconsin High Spectral Resolution Lidar system at Huntsville, Alabama, USA, and the NASA DC-8 research aircraft, we investigate the altitude dependence of aerosol, water vapor and Altocumulus (Ac) properties in the free troposphere from a canonical 12 August 2013 convective storm case as a segue to a presentation of a mission-wide analysis. It stands to reason that any moisture detrainment from convection must have an associated aerosol layer. Modes of covariability between aerosol, water vapor and Ac are examined relative to the boundary layer entrainment zone, 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C level, and anvil, a region known to contain Ac clouds and a complex aerosol layering structure (Reid et al., 2017). Multiple aerosol layers in regions warmer than 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C were observed within the planetary boundary layer entrainment zone. At 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C there is a proclivity for aerosol and water vapor detrainment from storms, in association with melting level Ac shelves. Finally, at temperatures colder than 0&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, weak aerosol layers were identified above Cumulus congestus tops (<span class="inline-formula">∼0</span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">20</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="8d516c7f10428f65837c03e018b98af2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-11413-2019-ie00001.svg" width="32pt" height="10pt" src="acp-19-11413-2019-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C). Stronger aerosol signals return in association with anvil outflow. In situ data suggest that detraining particles undergo aqueous-phase or heterogeneous chemical or microphysical transformations, while at the same time larger particles are being scavenged at higher altitudes leading to enhanced nucleation. We conclude by discussing hypotheses regarding links to aerosol emissions and potential indirect effects on Ac clouds.</p>https://www.atmos-chem-phys.net/19/11413/2019/acp-19-11413-2019.pdf