Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach

<p>Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the Earth's magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations can be used to investigate energy transfer, accelerat...

Full description

Bibliographic Details
Main Authors: M. Battarbee, T. Brito, M. Alho, Y. Pfau-Kempf, M. Grandin, U. Ganse, K. Papadakis, A. Johlander, L. Turc, M. Dubart, M. Palmroth
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Annales Geophysicae
Online Access:https://angeo.copernicus.org/articles/39/85/2021/angeo-39-85-2021.pdf
id doaj-3d8616682f5247f988cb48de8b3d751f
record_format Article
spelling doaj-3d8616682f5247f988cb48de8b3d751f2021-01-28T16:31:11ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762021-01-01398510310.5194/angeo-39-85-2021Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approachM. Battarbee0T. Brito1M. Alho2Y. Pfau-Kempf3M. Grandin4U. Ganse5K. Papadakis6A. Johlander7L. Turc8M. Dubart9M. Palmroth10M. Palmroth11Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandSpace Physics Research group, Department of Physics, University of Helsinki, Helsinki, FinlandFinnish Meteorological Institute, Helsinki, Finland<p>Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the Earth's magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations can be used to investigate energy transfer, acceleration, and plasma flows on both global and local scales. Simulation of global magnetospheric dynamics requires spatial and temporal scales currently achievable through magnetohydrodynamics or hybrid-kinetic simulations, which approximate electron dynamics as a charge-neutralizing fluid. We introduce a novel method for Vlasov-simulating electrons in the context of a hybrid-kinetic framework in order to examine the energization processes of magnetospheric electrons. Our extension of the Vlasiator hybrid-Vlasov code utilizes the global simulation dynamics of the hybrid method whilst modelling snapshots of electron dynamics on global spatial scales and temporal scales suitable for electron physics. Our eVlasiator model is shown to be stable both for single-cell and small-scale domains, and the solver successfully models Langmuir waves and Bernstein modes. We simulate a small test-case section of the near-Earth magnetotail plasma sheet region, reproducing a number of electron distribution function features found in spacecraft measurements.</p>https://angeo.copernicus.org/articles/39/85/2021/angeo-39-85-2021.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Battarbee
T. Brito
M. Alho
Y. Pfau-Kempf
M. Grandin
U. Ganse
K. Papadakis
A. Johlander
L. Turc
M. Dubart
M. Palmroth
M. Palmroth
spellingShingle M. Battarbee
T. Brito
M. Alho
Y. Pfau-Kempf
M. Grandin
U. Ganse
K. Papadakis
A. Johlander
L. Turc
M. Dubart
M. Palmroth
M. Palmroth
Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
Annales Geophysicae
author_facet M. Battarbee
T. Brito
M. Alho
Y. Pfau-Kempf
M. Grandin
U. Ganse
K. Papadakis
A. Johlander
L. Turc
M. Dubart
M. Palmroth
M. Palmroth
author_sort M. Battarbee
title Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
title_short Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
title_full Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
title_fullStr Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
title_full_unstemmed Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
title_sort vlasov simulation of electrons in the context of hybrid global models: an evlasiator approach
publisher Copernicus Publications
series Annales Geophysicae
issn 0992-7689
1432-0576
publishDate 2021-01-01
description <p>Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the Earth's magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations can be used to investigate energy transfer, acceleration, and plasma flows on both global and local scales. Simulation of global magnetospheric dynamics requires spatial and temporal scales currently achievable through magnetohydrodynamics or hybrid-kinetic simulations, which approximate electron dynamics as a charge-neutralizing fluid. We introduce a novel method for Vlasov-simulating electrons in the context of a hybrid-kinetic framework in order to examine the energization processes of magnetospheric electrons. Our extension of the Vlasiator hybrid-Vlasov code utilizes the global simulation dynamics of the hybrid method whilst modelling snapshots of electron dynamics on global spatial scales and temporal scales suitable for electron physics. Our eVlasiator model is shown to be stable both for single-cell and small-scale domains, and the solver successfully models Langmuir waves and Bernstein modes. We simulate a small test-case section of the near-Earth magnetotail plasma sheet region, reproducing a number of electron distribution function features found in spacecraft measurements.</p>
url https://angeo.copernicus.org/articles/39/85/2021/angeo-39-85-2021.pdf
work_keys_str_mv AT mbattarbee vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT tbrito vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT malho vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT ypfaukempf vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT mgrandin vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT uganse vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT kpapadakis vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT ajohlander vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT lturc vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT mdubart vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT mpalmroth vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
AT mpalmroth vlasovsimulationofelectronsinthecontextofhybridglobalmodelsanevlasiatorapproach
_version_ 1724319613168123904