Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures
The mechanism of negative permittivity/permeability is still unclear in the random metamaterials, where the precise control of microstructure and electromagnetic properties is also a challenge due to its random characteristic. Here silver was introduced into porous SiO2 microsphere matrix by a self-...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Association for the Advancement of Science
2019-01-01
|
Series: | Research |
Online Access: | http://dx.doi.org/10.1155/2019/1021368 |
id |
doaj-3db5d83452d745e498cbfe264eed593e |
---|---|
record_format |
Article |
spelling |
doaj-3db5d83452d745e498cbfe264eed593e2020-11-25T02:29:38ZengAmerican Association for the Advancement of ScienceResearch2639-52742019-01-01201910.1155/2019/1021368Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of MicrostructuresPeitao Xie0Peitao Xie1Zidong Zhang2Zhongyang Wang3Kai Sun4Runhua Fan5Runhua Fan6College of Ocean Science and Engineering,Shanghai Maritime University,Shanghai 201306,ChinaKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),Shandong University,Jinan 250061,ChinaKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),Shandong University,Jinan 250061,ChinaKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),Shandong University,Jinan 250061,ChinaCollege of Ocean Science and Engineering,Shanghai Maritime University,Shanghai 201306,ChinaCollege of Ocean Science and Engineering,Shanghai Maritime University,Shanghai 201306,ChinaKey Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),Shandong University,Jinan 250061,ChinaThe mechanism of negative permittivity/permeability is still unclear in the random metamaterials, where the precise control of microstructure and electromagnetic properties is also a challenge due to its random characteristic. Here silver was introduced into porous SiO2 microsphere matrix by a self-assemble and template method to construct the random metamaterials. The distribution of silver was restricted among the interstices of SiO2 microspheres, which lead to the precise regulation of electrical percolation (from hoping to Drude-type conductivity) with increasing silver content. Negative permittivity came from the plasma-like behavior of silver network, and its value and frequency dispersion were further adjusted by Lorentz-type dielectric response. During this process, the frequency of epsilon-near-zero (ENZ) could be adjusted accordingly. Negative permeability was well explained by the magnetic response of eddy current in silver micronetwork. The calculation results indicated that negative permeability has a linear relation with ω0.5, showing a relaxation-type spectrum, different from the “magnetic plasma” of periodic metamaterials. Electromagnetic simulations demonstrated that negative permittivity materials and ENZ materials, with the advantage of enhanced absorption (40dB) and intelligent frequency selection even in a thin thickness (0.1 mm), could have potentials for electromagnetic attenuation and shielding. This work provides a clear physical image for the theoretical explanation of negative permittivity and negative permeability in random metamaterials, as well as a novel strategy to precisely control the microstructure of random metamaterials.http://dx.doi.org/10.1155/2019/1021368 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peitao Xie Peitao Xie Zidong Zhang Zhongyang Wang Kai Sun Runhua Fan Runhua Fan |
spellingShingle |
Peitao Xie Peitao Xie Zidong Zhang Zhongyang Wang Kai Sun Runhua Fan Runhua Fan Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures Research |
author_facet |
Peitao Xie Peitao Xie Zidong Zhang Zhongyang Wang Kai Sun Runhua Fan Runhua Fan |
author_sort |
Peitao Xie |
title |
Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures |
title_short |
Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures |
title_full |
Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures |
title_fullStr |
Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures |
title_full_unstemmed |
Targeted Double Negative Properties in Silver/Silica Random Metamaterials by Precise Control of Microstructures |
title_sort |
targeted double negative properties in silver/silica random metamaterials by precise control of microstructures |
publisher |
American Association for the Advancement of Science |
series |
Research |
issn |
2639-5274 |
publishDate |
2019-01-01 |
description |
The mechanism of negative permittivity/permeability is still unclear in the random metamaterials, where the precise control of microstructure and electromagnetic properties is also a challenge due to its random characteristic. Here silver was introduced into porous SiO2 microsphere matrix by a self-assemble and template method to construct the random metamaterials. The distribution of silver was restricted among the interstices of SiO2 microspheres, which lead to the precise regulation of electrical percolation (from hoping to Drude-type conductivity) with increasing silver content. Negative permittivity came from the plasma-like behavior of silver network, and its value and frequency dispersion were further adjusted by Lorentz-type dielectric response. During this process, the frequency of epsilon-near-zero (ENZ) could be adjusted accordingly. Negative permeability was well explained by the magnetic response of eddy current in silver micronetwork. The calculation results indicated that negative permeability has a linear relation with ω0.5, showing a relaxation-type spectrum, different from the “magnetic plasma” of periodic metamaterials. Electromagnetic simulations demonstrated that negative permittivity materials and ENZ materials, with the advantage of enhanced absorption (40dB) and intelligent frequency selection even in a thin thickness (0.1 mm), could have potentials for electromagnetic attenuation and shielding. This work provides a clear physical image for the theoretical explanation of negative permittivity and negative permeability in random metamaterials, as well as a novel strategy to precisely control the microstructure of random metamaterials. |
url |
http://dx.doi.org/10.1155/2019/1021368 |
work_keys_str_mv |
AT peitaoxie targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT peitaoxie targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT zidongzhang targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT zhongyangwang targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT kaisun targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT runhuafan targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures AT runhuafan targeteddoublenegativepropertiesinsilversilicarandommetamaterialsbyprecisecontrolofmicrostructures |
_version_ |
1724831797073674240 |