Preparation of lignosulfonate‐based nanofiltration membranes with improved water desalination performance

Abstract Pulping and papermaking generate large amounts of waste in the form of lignosulfonates which have limited valorized applications so far. Herein, we report a novel lignosulfonate‐based nanofiltration membrane, prepared by using polyethylenimine (PEI) and sodium lignosulfonate (SL) via a laye...

Full description

Bibliographic Details
Main Authors: Wangqu Liu, Xin Geng, Saisai Li, Xia Zhan, Jiding Li, Luying Wang, Jiandu Lei
Format: Article
Language:English
Published: Wiley-VCH 2021-06-01
Series:Engineering in Life Sciences
Subjects:
Online Access:https://doi.org/10.1002/elsc.202000102
Description
Summary:Abstract Pulping and papermaking generate large amounts of waste in the form of lignosulfonates which have limited valorized applications so far. Herein, we report a novel lignosulfonate‐based nanofiltration membrane, prepared by using polyethylenimine (PEI) and sodium lignosulfonate (SL) via a layer‐by‐layer (LbL) self‐assembly. As a low‐cost and renewable natural polyelectrolyte, SL is selected to replace the synthetic polyelectrolyte commonly used in the conventional LbL fabrication for composite membranes. The prepared LbL (PEI/SL)7 membranes were crosslinked by glutaraldehyde (GA) to obtain (PEI/SL)7‐GA membranes with compact selective layer. We characterized (PEI/SL)7 and (PEI/SL)7‐GA membranes to study the chemical compositions, morphologies, and surface hydrophilicity. To improve the nanofiltration performances of the (PEI/SL)7‐GA membranes for water desalination, we investigated the effects of the crosslinking time, GA concentration and the NaCl supporting electrolyte on membrane structure and performance. The optimized (PEI/SL)7‐GA membrane exhibited a permeating flux up to 39.6 L/(m2·h) and a rejection of 91.7% for the MgSO4 aqueous solution 2.0 g/L concentration, showing its promising potential for water desalination. This study provides a new approach to applying the underdeveloped lignin‐based biomass as green membrane materials for water treatment.
ISSN:1618-0240
1618-2863