Uncertainty Quantification in Energy Management Procedures

Complex energy systems are made up of a number of components interacting together via different energy vectors. The assessment of their performance under dynamic working conditions, where user demand and energy prices vary over time, requires a simulation tool. Regardless of the accuracy of this pro...

Full description

Bibliographic Details
Main Authors: Luca Giaccone, Paolo Lazzeroni, Maurizio Repetto
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/9/1471
Description
Summary:Complex energy systems are made up of a number of components interacting together via different energy vectors. The assessment of their performance under dynamic working conditions, where user demand and energy prices vary over time, requires a simulation tool. Regardless of the accuracy of this procedure, the uncertainty in data, obtained both by measurements or by forecasting, is usually non-negligible and requires the study of the sensitivity of results versus input data. In this work, polynomial chaos expansion technique is used to evaluate the variation of cogeneration plant performance with respect to the uncertainty of energy prices and user requests. The procedure allows to obtain this information with a much lower computational cost than that of usual Monte-Carlo approaches. Furthermore, all the tools used in this paper, which were developed in Python, are published as free and open source software.
ISSN:2079-9292