Multi-Disease Deep Brain Stimulation

Current closed-loop deep brain stimulation (DBS) devices can generally tackle one disorder. This paper presents the design and evaluation of a multi-disease closed-loop DBS device that can sense multiple brain biomarkers, detect a disorder, and adaptively deliver electrical stimulation pulses based...

Full description

Bibliographic Details
Main Authors: Mahboubeh Parastarfeizabadi, Roy V. Sillitoe, Abbas Z. Kouzani
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9276395/
id doaj-3e936d1b6eea4303bd8f8be8e13aae63
record_format Article
spelling doaj-3e936d1b6eea4303bd8f8be8e13aae632021-03-30T04:53:10ZengIEEEIEEE Access2169-35362020-01-01821693321694710.1109/ACCESS.2020.30419429276395Multi-Disease Deep Brain StimulationMahboubeh Parastarfeizabadi0Roy V. Sillitoe1Abbas Z. Kouzani2https://orcid.org/0000-0002-6292-1214School of Engineering, Deakin University, Geelong, VIC, AustraliaDepartment of Pathology and Immunology, Jan and Dan Duncan Neurological Research Institute, and Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USASchool of Engineering, Deakin University, Geelong, VIC, AustraliaCurrent closed-loop deep brain stimulation (DBS) devices can generally tackle one disorder. This paper presents the design and evaluation of a multi-disease closed-loop DBS device that can sense multiple brain biomarkers, detect a disorder, and adaptively deliver electrical stimulation pulses based on the disease state. The device consists of: (i) a neural sensor, (ii) a controller involving a feature extractor, a disease classifier, and a control strategy, and (iii) neural stimulator. The neural sensor records and processes local field potentials and spikes from within the brain using two low-frequency and high-frequency channels. The feature extractor digitally processes the output of the neural sensor, and extracts five potential biomarkers: alpha, beta, slow gamma, high-frequency oscillations, and spikes. The disease classifier identifies the type of the neurological disorder through an analysis of the biomarkers' amplitude features. The control strategy considers the disease state and supplies the stimulation settings to the neural stimulator. Both the disease classifier and control strategy are based on fuzzy algorithms. The neural stimulator generates electrical stimulation pulses according to the control commands, and delivers them to the target area of the brain. The device can generate current stimulation pulses with specific amplitude, frequency, and duration. The fabricated device has the maximum radius of 15 mm. Its total weight including the circuit board, battery and battery holder is 5.1 g. The performance of the integrated device has been evaluated through six bench and in-vitro experiments. The experimental results are presented, analyzed, and discussed. Six bench and in-vitro experiments were conducted using sinusoidal, normal pre-recorded, and diseased neural signals representing normal, epilepsy, depression and PD conditions. The results obtained through these tests indicate the successful neural sensing, classification, control, and neural stimulating performance.https://ieeexplore.ieee.org/document/9276395/Biomarkersclosed-loopdeep brain stimulationfuzzy logicmultiple diseases
collection DOAJ
language English
format Article
sources DOAJ
author Mahboubeh Parastarfeizabadi
Roy V. Sillitoe
Abbas Z. Kouzani
spellingShingle Mahboubeh Parastarfeizabadi
Roy V. Sillitoe
Abbas Z. Kouzani
Multi-Disease Deep Brain Stimulation
IEEE Access
Biomarkers
closed-loop
deep brain stimulation
fuzzy logic
multiple diseases
author_facet Mahboubeh Parastarfeizabadi
Roy V. Sillitoe
Abbas Z. Kouzani
author_sort Mahboubeh Parastarfeizabadi
title Multi-Disease Deep Brain Stimulation
title_short Multi-Disease Deep Brain Stimulation
title_full Multi-Disease Deep Brain Stimulation
title_fullStr Multi-Disease Deep Brain Stimulation
title_full_unstemmed Multi-Disease Deep Brain Stimulation
title_sort multi-disease deep brain stimulation
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2020-01-01
description Current closed-loop deep brain stimulation (DBS) devices can generally tackle one disorder. This paper presents the design and evaluation of a multi-disease closed-loop DBS device that can sense multiple brain biomarkers, detect a disorder, and adaptively deliver electrical stimulation pulses based on the disease state. The device consists of: (i) a neural sensor, (ii) a controller involving a feature extractor, a disease classifier, and a control strategy, and (iii) neural stimulator. The neural sensor records and processes local field potentials and spikes from within the brain using two low-frequency and high-frequency channels. The feature extractor digitally processes the output of the neural sensor, and extracts five potential biomarkers: alpha, beta, slow gamma, high-frequency oscillations, and spikes. The disease classifier identifies the type of the neurological disorder through an analysis of the biomarkers' amplitude features. The control strategy considers the disease state and supplies the stimulation settings to the neural stimulator. Both the disease classifier and control strategy are based on fuzzy algorithms. The neural stimulator generates electrical stimulation pulses according to the control commands, and delivers them to the target area of the brain. The device can generate current stimulation pulses with specific amplitude, frequency, and duration. The fabricated device has the maximum radius of 15 mm. Its total weight including the circuit board, battery and battery holder is 5.1 g. The performance of the integrated device has been evaluated through six bench and in-vitro experiments. The experimental results are presented, analyzed, and discussed. Six bench and in-vitro experiments were conducted using sinusoidal, normal pre-recorded, and diseased neural signals representing normal, epilepsy, depression and PD conditions. The results obtained through these tests indicate the successful neural sensing, classification, control, and neural stimulating performance.
topic Biomarkers
closed-loop
deep brain stimulation
fuzzy logic
multiple diseases
url https://ieeexplore.ieee.org/document/9276395/
work_keys_str_mv AT mahboubehparastarfeizabadi multidiseasedeepbrainstimulation
AT royvsillitoe multidiseasedeepbrainstimulation
AT abbaszkouzani multidiseasedeepbrainstimulation
_version_ 1724181084880502784