Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides

Some bacteria release volatile organic compounds (VOCs) that can influence the growth of other microorganisms including some pathogens. Identifying bacteria with antifungal activity makes it possible to use such bacteria in the development of biocontrol agents. Thus, the present study focuses on scr...

Full description

Bibliographic Details
Main Authors: Laura Carolina Coconubo Guio, Diana Cristina Sinuco León, Leonardo Castellanos Hernández
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2020-01-01
Series:Revista Colombiana de Química
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/rcolquim/article/view/81996
Description
Summary:Some bacteria release volatile organic compounds (VOCs) that can influence the growth of other microorganisms including some pathogens. Identifying bacteria with antifungal activity makes it possible to use such bacteria in the development of biocontrol agents. Thus, the present study focuses on screening VOCs released by eight isolates from Paenibacillus genus, collected at Old Providence and Santa Catalina coral reef (Colombian Caribbean Sea), with antifungal activity against phytopathogenic fungi Colletotrichum gloeosporioides 26B. The VOCs from Paenibacillus sp (PNM-50) showed inhibition rates higher than 50% in the mycelial fungi growth accompanied by macroscopic morphological changes and a reduction in conidiation. In order to identify the VOCs responsible for this antifungal bioactivity, Headspace-Solid Phase Microextraction (HS-SPME) from the bacterial culture was conducted, followed by Gas Chromatography Mass Spectrometry (GC-MS). The chromatographic results revealed a high abundance of VOCs released just by culture media. Once, the difference between VOCs emitted by culture media and bacteria was established, it was possible to make a putative identification of 2-furanmethanol, phenylacetonitrile, and 2,4-dimethylpentanol as possible VOCs responsible for the antifungal activity.
ISSN:0120-2804
2357-3791