Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding...

Full description

Bibliographic Details
Main Authors: Hermann eStoll, Matthias eNoske, Markus eWeigand, Kornel eRichter, Benjamin eKrüger, Robert M. Reeve, Max eHänze, Christian F. Adolff, Falk-Ulrich eStein, Guido eMeier, Mathias eKläui, Gisela eSchütz
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-04-01
Series:Frontiers in Physics
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00026/full
id doaj-3f7c981121da4b1380a2a1f27ddef3e6
record_format Article
spelling doaj-3f7c981121da4b1380a2a1f27ddef3e62020-11-24T22:34:59ZengFrontiers Media S.A.Frontiers in Physics2296-424X2015-04-01310.3389/fphy.2015.00026134176Imaging Spin Dynamics on the Nanoscale using X-Ray MicroscopyHermann eStoll0Matthias eNoske1Markus eWeigand2Kornel eRichter3Benjamin eKrüger4Robert M. Reeve5Max eHänze6Christian F. Adolff7Falk-Ulrich eStein8Guido eMeier9Guido eMeier10Guido eMeier11Mathias eKläui12Gisela eSchütz13Max-Planck-Institut für Intelligente SystemeMax-Planck-Institut für Intelligente SystemeMax-Planck-Institut für Intelligente SystemeJohannes Gutenberg-Universität MainzJohannes Gutenberg-Universität MainzJohannes Gutenberg-Universität MainzUniversität HamburgUniversität HamburgUniversität HamburgUniversität HamburgUniversity of HamburgMax-Planck-Institut für Struktur und Dynamik der MaterieJohannes Gutenberg-Universität MainzMax-Planck-Institut für Intelligente SystemeThe dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00026/fullX-ray microscopyspin wavesDomain wallsspin-transfer-torquevortex dynamicsCoupled modes
collection DOAJ
language English
format Article
sources DOAJ
author Hermann eStoll
Matthias eNoske
Markus eWeigand
Kornel eRichter
Benjamin eKrüger
Robert M. Reeve
Max eHänze
Christian F. Adolff
Falk-Ulrich eStein
Guido eMeier
Guido eMeier
Guido eMeier
Mathias eKläui
Gisela eSchütz
spellingShingle Hermann eStoll
Matthias eNoske
Markus eWeigand
Kornel eRichter
Benjamin eKrüger
Robert M. Reeve
Max eHänze
Christian F. Adolff
Falk-Ulrich eStein
Guido eMeier
Guido eMeier
Guido eMeier
Mathias eKläui
Gisela eSchütz
Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
Frontiers in Physics
X-ray microscopy
spin waves
Domain walls
spin-transfer-torque
vortex dynamics
Coupled modes
author_facet Hermann eStoll
Matthias eNoske
Markus eWeigand
Kornel eRichter
Benjamin eKrüger
Robert M. Reeve
Max eHänze
Christian F. Adolff
Falk-Ulrich eStein
Guido eMeier
Guido eMeier
Guido eMeier
Mathias eKläui
Gisela eSchütz
author_sort Hermann eStoll
title Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
title_short Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
title_full Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
title_fullStr Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
title_full_unstemmed Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy
title_sort imaging spin dynamics on the nanoscale using x-ray microscopy
publisher Frontiers Media S.A.
series Frontiers in Physics
issn 2296-424X
publishDate 2015-04-01
description The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM), combining magnetic (XMCD) contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz) rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.
topic X-ray microscopy
spin waves
Domain walls
spin-transfer-torque
vortex dynamics
Coupled modes
url http://journal.frontiersin.org/Journal/10.3389/fphy.2015.00026/full
work_keys_str_mv AT hermannestoll imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT matthiasenoske imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT markuseweigand imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT kornelerichter imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT benjaminekruger imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT robertmreeve imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT maxehanze imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT christianfadolff imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT falkulrichestein imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT guidoemeier imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT guidoemeier imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT guidoemeier imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT mathiaseklaui imagingspindynamicsonthenanoscaleusingxraymicroscopy
AT giselaeschutz imagingspindynamicsonthenanoscaleusingxraymicroscopy
_version_ 1725725293671350272