Spin-filter and spin-gapless semiconductors: The case of Heusler compounds

We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatil...

Full description

Bibliographic Details
Main Authors: I. Galanakis, K. Özdoğan, E. Şaşıoğlu
Format: Article
Language:English
Published: AIP Publishing LLC 2016-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4943761
Description
Summary:We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatile applications, e.g. as spin-filter materials in magnetic tunnel junctions. Finally, a special case are the spin-gapless semiconductors, where the energy gap at the Fermi level for the one spin-direction is almost vanishing, offering novel functionalities in spintronic/magnetoelectronic devices.
ISSN:2158-3226