Instantaneous Rotational Speed Algorithm for Locating Malfunctions in Marine Diesel Engines

This article suggested broadening the standard methods for diagnosing the technical condition of diesel engines to include an analysis of the instantaneous rotational speed of compression combustion engines with the use of a novel algorithm. The authors revised the subject concerning the use of the...

Full description

Bibliographic Details
Main Authors: Damian Kazienko, Leszek Chybowski
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/6/1396
Description
Summary:This article suggested broadening the standard methods for diagnosing the technical condition of diesel engines to include an analysis of the instantaneous rotational speed of compression combustion engines with the use of a novel algorithm. The authors revised the subject concerning the use of the analysis of instantaneous changes in the rotational speed of an engine when assessing its technical condition and the location of the malfunction. An algorithm and its practical implementation in a prototype diagnostic system called SpeedMA were presented. This article reported the test results of the prototype in the context of indicating the engine cylinder in which ignition failed to occur. Tests were carried out for two marine engines: a low-speed trunk engine directly driving the fixed-pitch propeller and a medium-speed trunk engine driving the alternator. For each case, an analysis was carried out for different engine loads and at individual cylinders in which combustion failed to occur. The experimental results showed an unambiguous relation between the combustion process of the examined engines and changes in the instantaneous rotational speed. The results also confirmed the usefulness of the proposed method and showed the correct operation of the presented diagnostic algorithm. The proposed diagnostic system could be used during the operation of engines running in real ship engine rooms.
ISSN:1996-1073