Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli

Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the constructi...

Full description

Bibliographic Details
Main Authors: Avi I Flamholz, Eli Dugan, Cecilia Blikstad, Shmuel Gleizer, Roee Ben-Nissan, Shira Amram, Niv Antonovsky, Sumedha Ravishankar, Elad Noor, Arren Bar-Even, Ron Milo, David F Savage
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2020-10-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/59882
id doaj-40798ec64c204da89261635aaa82c4c2
record_format Article
spelling doaj-40798ec64c204da89261635aaa82c4c22021-05-05T21:37:51ZengeLife Sciences Publications LtdeLife2050-084X2020-10-01910.7554/eLife.59882Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coliAvi I Flamholz0https://orcid.org/0000-0002-9278-5479Eli Dugan1https://orcid.org/0000-0003-2400-5511Cecilia Blikstad2https://orcid.org/0000-0001-5740-926XShmuel Gleizer3Roee Ben-Nissan4Shira Amram5Niv Antonovsky6Sumedha Ravishankar7https://orcid.org/0000-0002-4026-0742Elad Noor8https://orcid.org/0000-0001-8776-4799Arren Bar-Even9https://orcid.org/0000-0002-1039-4328Ron Milo10https://orcid.org/0000-0003-1641-2299David F Savage11https://orcid.org/0000-0003-0042-2257Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United StatesDepartment of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United StatesDepartment of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United StatesDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United StatesDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelMax Planck Institute of Molecular Plant Physiology, Potsdam, GermanyDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, IsraelDepartment of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United StatesMany photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.https://elifesciences.org/articles/59882co2 fixationco2 concentrating mechanismphotosynthesiscarboxysomesynthetic biology
collection DOAJ
language English
format Article
sources DOAJ
author Avi I Flamholz
Eli Dugan
Cecilia Blikstad
Shmuel Gleizer
Roee Ben-Nissan
Shira Amram
Niv Antonovsky
Sumedha Ravishankar
Elad Noor
Arren Bar-Even
Ron Milo
David F Savage
spellingShingle Avi I Flamholz
Eli Dugan
Cecilia Blikstad
Shmuel Gleizer
Roee Ben-Nissan
Shira Amram
Niv Antonovsky
Sumedha Ravishankar
Elad Noor
Arren Bar-Even
Ron Milo
David F Savage
Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
eLife
co2 fixation
co2 concentrating mechanism
photosynthesis
carboxysome
synthetic biology
author_facet Avi I Flamholz
Eli Dugan
Cecilia Blikstad
Shmuel Gleizer
Roee Ben-Nissan
Shira Amram
Niv Antonovsky
Sumedha Ravishankar
Elad Noor
Arren Bar-Even
Ron Milo
David F Savage
author_sort Avi I Flamholz
title Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
title_short Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
title_full Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
title_fullStr Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
title_full_unstemmed Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli
title_sort functional reconstitution of a bacterial co2 concentrating mechanism in escherichia coli
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2020-10-01
description Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
topic co2 fixation
co2 concentrating mechanism
photosynthesis
carboxysome
synthetic biology
url https://elifesciences.org/articles/59882
work_keys_str_mv AT aviiflamholz functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT elidugan functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT ceciliablikstad functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT shmuelgleizer functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT roeebennissan functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT shiraamram functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT nivantonovsky functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT sumedharavishankar functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT eladnoor functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT arrenbareven functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT ronmilo functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
AT davidfsavage functionalreconstitutionofabacterialco2concentratingmechanisminescherichiacoli
_version_ 1721457974201810944