A Unified and Open LTSPICE Memristor Model Library

In this paper, a unified and open linear technology simulation program with integrated circuit emphasis (LTSPICE) memristor library is proposed. It is suitable for the analysis, design, and comparison of the basic memristors and memristor-based circuits. The library could be freely used and expanded...

Full description

Bibliographic Details
Main Author: Valeri Mladenov
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/13/1594
Description
Summary:In this paper, a unified and open linear technology simulation program with integrated circuit emphasis (LTSPICE) memristor library is proposed. It is suitable for the analysis, design, and comparison of the basic memristors and memristor-based circuits. The library could be freely used and expanded with new LTSPICE memristor models. The main existing standard memristor models and several enhanced and modified models based on transition metal oxides such as titanium dioxide, hafnium dioxide, and tantalum oxide are included in the library. LTSPICE is one of the best software for analysis and design of electronic schemes. It is an easy to use, widespread, and free product with very good convergence. Memristors have been under intensive analysis in recent years due to their nano-dimensions, low power consumption, high switching speed, and good compatibility with traditional complementary metal oxide semiconductor (CMOS) technology. In this work, their behavior and potential applications in artificial neural networks, reconfigurable schemes, and memory crossbars are investigated using the considered memristor models in the proposed LTSPICE library. Furthermore, a detailed comparison of the presented LTSPICE memristor model library is conducted and related to specific criteria, such as switching speed, operating frequencies, nonlinear ionic drift representation, boundary effects, switching modes, and others.
ISSN:2079-9292