Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function

Recall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M...

Full description

Bibliographic Details
Main Author: E. A. Timofeev
Format: Article
Language:English
Published: Yaroslavl State University 2016-10-01
Series:Modelirovanie i Analiz Informacionnyh Sistem
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/393
id doaj-416dbf4804eb41c0b871f6e21be798f0
record_format Article
spelling doaj-416dbf4804eb41c0b871f6e21be798f02021-07-29T08:15:22ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172016-10-0123559560210.18255/1818-1015-2016-5-595-602329Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular FunctionE. A. Timofeev0P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, RussiaRecall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots$$The main result of this paper is$$M_n =n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),$$where$$\tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.Li_{z}\left(-\frac{q}{p}\right)\right|_{z=1} %+\\ \\+\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)Li_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},$$$$z_k = \frac{2\pi ik}{\ln 2}, \ \ k\ne 0.$$The proof is based on analytic techniques such as the poissonization and the Mellin transform.https://www.mais-journal.ru/jour/article/view/393momentsself-similarlebesgue’s functionsingularmellin transformpolylogarithmasymptotic
collection DOAJ
language English
format Article
sources DOAJ
author E. A. Timofeev
spellingShingle E. A. Timofeev
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
Modelirovanie i Analiz Informacionnyh Sistem
moments
self-similar
lebesgue’s function
singular
mellin transform
polylogarithm
asymptotic
author_facet E. A. Timofeev
author_sort E. A. Timofeev
title Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
title_short Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
title_full Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
title_fullStr Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
title_full_unstemmed Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
title_sort polylogarithms and the asymptotic formula for the moments of lebesgue’s singular function
publisher Yaroslavl State University
series Modelirovanie i Analiz Informacionnyh Sistem
issn 1818-1015
2313-5417
publishDate 2016-10-01
description Recall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots$$The main result of this paper is$$M_n =n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),$$where$$\tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.Li_{z}\left(-\frac{q}{p}\right)\right|_{z=1} %+\\ \\+\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)Li_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},$$$$z_k = \frac{2\pi ik}{\ln 2}, \ \ k\ne 0.$$The proof is based on analytic techniques such as the poissonization and the Mellin transform.
topic moments
self-similar
lebesgue’s function
singular
mellin transform
polylogarithm
asymptotic
url https://www.mais-journal.ru/jour/article/view/393
work_keys_str_mv AT eatimofeev polylogarithmsandtheasymptoticformulaforthemomentsoflebesguessingularfunction
_version_ 1721256451763077120