Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function
Recall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2016-10-01
|
Series: | Modelirovanie i Analiz Informacionnyh Sistem |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/393 |
id |
doaj-416dbf4804eb41c0b871f6e21be798f0 |
---|---|
record_format |
Article |
spelling |
doaj-416dbf4804eb41c0b871f6e21be798f02021-07-29T08:15:22ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172016-10-0123559560210.18255/1818-1015-2016-5-595-602329Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular FunctionE. A. Timofeev0P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, RussiaRecall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots$$The main result of this paper is$$M_n =n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),$$where$$\tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.Li_{z}\left(-\frac{q}{p}\right)\right|_{z=1} %+\\ \\+\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)Li_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},$$$$z_k = \frac{2\pi ik}{\ln 2}, \ \ k\ne 0.$$The proof is based on analytic techniques such as the poissonization and the Mellin transform.https://www.mais-journal.ru/jour/article/view/393momentsself-similarlebesgue’s functionsingularmellin transformpolylogarithmasymptotic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. A. Timofeev |
spellingShingle |
E. A. Timofeev Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function Modelirovanie i Analiz Informacionnyh Sistem moments self-similar lebesgue’s function singular mellin transform polylogarithm asymptotic |
author_facet |
E. A. Timofeev |
author_sort |
E. A. Timofeev |
title |
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
title_short |
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
title_full |
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
title_fullStr |
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
title_full_unstemmed |
Polylogarithms and the Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
title_sort |
polylogarithms and the asymptotic formula for the moments of lebesgue’s singular function |
publisher |
Yaroslavl State University |
series |
Modelirovanie i Analiz Informacionnyh Sistem |
issn |
1818-1015 2313-5417 |
publishDate |
2016-10-01 |
description |
Recall the Lebesgue's singular function. We define a Lebesgue's singular function \(L(t)\) as the unique continuous solution of the functional equation$$L(t) = qL(2t) +pL(2t-1),$$where \(p,q>0\), \(q=1-p\), \(p\ne q\).The moments of Lebesque' singular function are defined as$$M_n = \int_0^1t^n dL(t), \quad n = 0, 1, \dots$$The main result of this paper is$$M_n =n^{\log_2 p} e^{-\tau(n)}\left(1 + \mathcal{O}(n^{-0.99})\right),$$where$$\tau(x) = \frac12\ln p + \Gamma'(1)\log_2 p +\frac1{\ln 2}\frac{\partial}{\partial z}\left.Li_{z}\left(-\frac{q}{p}\right)\right|_{z=1} %+\\ \\+\frac1{\ln 2}\sum_{k\ne0} \Gamma(z_k)Li_{z_k+1}\left(-\frac{q}{p}\right) x^{-z_k},$$$$z_k = \frac{2\pi ik}{\ln 2}, \ \ k\ne 0.$$The proof is based on analytic techniques such as the poissonization and the Mellin transform. |
topic |
moments self-similar lebesgue’s function singular mellin transform polylogarithm asymptotic |
url |
https://www.mais-journal.ru/jour/article/view/393 |
work_keys_str_mv |
AT eatimofeev polylogarithmsandtheasymptoticformulaforthemomentsoflebesguessingularfunction |
_version_ |
1721256451763077120 |