The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001) surface

We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surfa...

Full description

Bibliographic Details
Main Authors: Moitra A., Kim S., Park S.J., Kim S.G., Horstemeyer M.F.
Format: Article
Language:English
Published: International Institute for the Science of Sintering, Beograd 2011-01-01
Series:Science of Sintering
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0350-820X/2011/0350-820X1102153M.pdf
Description
Summary:We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001) surface is compared with that of a W and C adatom on a WC (0001) surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC.
ISSN:0350-820X