On boundedness of integral means of Blaschke product logarithms

Using the Fourier series method for the analytic functions, we obtain a result characterizing the behaviour of the integral means of Blaschke product logarithms. Namely, if the zero counting function n(r, B) of the Blaschke product B satisfies the conditionwhere l is a positive function on (0, 1)...

Full description

Bibliographic Details
Main Authors: YA. V. Vasylkiv, A. A. Kondratyuk, S. I. Tarasyuk
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2003-09-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9782
Description
Summary:Using the Fourier series method for the analytic functions, we obtain a result characterizing the behaviour of the integral means of Blaschke product logarithms. Namely, if the zero counting function n(r, B) of the Blaschke product B satisfies the conditionwhere l is a positive function on (0, 1) such thatthen the q‐integral mean mq (r, log B) = [] is bounded on (0,1), where log B is a branch of the logarithm of B. Šiame straipsnyje Furje eilučiu metodu gauta analitiniu funkciju Blaschke sandaugos logaritmu integraliniu reikšmiu elgsenos charakteristika. Jeigu Blaschke sandaugos B nuliu funkcija n(r, B) tenkina salyga [], čia l yra neneigiama funkcija intervale (0,1) ir [], tuomet q‐integraline reikšme [] yra aprežta intervale (0,1), kai log B yra B logaritmo šaka. First Published Online: 14 Oct 2010
ISSN:1392-6292
1648-3510