On boundedness of integral means of Blaschke product logarithms
Using the Fourier series method for the analytic functions, we obtain a result characterizing the behaviour of the integral means of Blaschke product logarithms. Namely, if the zero counting function n(r, B) of the Blaschke product B satisfies the conditionwhere l is a positive function on (0, 1)...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2003-09-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9782 |
Summary: | Using the Fourier series method for the analytic functions, we obtain a result characterizing the behaviour of the integral means of Blaschke product logarithms. Namely, if the zero counting function n(r, B) of the Blaschke product B satisfies the conditionwhere l is a positive function on (0, 1) such thatthen the q‐integral mean mq (r, log B) = [] is bounded on (0,1), where log B is a branch of the logarithm of B.
Šiame straipsnyje Furje eilučiu metodu gauta analitiniu funkciju Blaschke sandaugos logaritmu integraliniu reikšmiu elgsenos charakteristika. Jeigu Blaschke sandaugos B nuliu funkcija n(r, B) tenkina salyga [], čia l yra neneigiama funkcija intervale (0,1) ir [], tuomet q‐integraline reikšme [] yra aprežta intervale (0,1), kai log B yra B logaritmo šaka.
First Published Online: 14 Oct 2010
|
---|---|
ISSN: | 1392-6292 1648-3510 |