An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.

After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control...

Full description

Bibliographic Details
Main Authors: Masabho P Milali, Samson S Kiware, Nicodem J Govella, Fredros Okumu, Naveen Bansal, Serdar Bozdag, Jacques D Charlwood, Marta F Maia, Sheila B Ogoma, Floyd E Dowell, George F Corliss, Maggy T Sikulu-Lord, Richard J Povinelli
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0234557
id doaj-41d6abafd931433285cadb1ced16c8f9
record_format Article
spelling doaj-41d6abafd931433285cadb1ced16c8f92021-03-03T21:52:42ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01156e023455710.1371/journal.pone.0234557An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.Masabho P MilaliSamson S KiwareNicodem J GovellaFredros OkumuNaveen BansalSerdar BozdagJacques D CharlwoodMarta F MaiaSheila B OgomaFloyd E DowellGeorge F CorlissMaggy T Sikulu-LordRichard J PovinelliAfter mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.https://doi.org/10.1371/journal.pone.0234557
collection DOAJ
language English
format Article
sources DOAJ
author Masabho P Milali
Samson S Kiware
Nicodem J Govella
Fredros Okumu
Naveen Bansal
Serdar Bozdag
Jacques D Charlwood
Marta F Maia
Sheila B Ogoma
Floyd E Dowell
George F Corliss
Maggy T Sikulu-Lord
Richard J Povinelli
spellingShingle Masabho P Milali
Samson S Kiware
Nicodem J Govella
Fredros Okumu
Naveen Bansal
Serdar Bozdag
Jacques D Charlwood
Marta F Maia
Sheila B Ogoma
Floyd E Dowell
George F Corliss
Maggy T Sikulu-Lord
Richard J Povinelli
An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
PLoS ONE
author_facet Masabho P Milali
Samson S Kiware
Nicodem J Govella
Fredros Okumu
Naveen Bansal
Serdar Bozdag
Jacques D Charlwood
Marta F Maia
Sheila B Ogoma
Floyd E Dowell
George F Corliss
Maggy T Sikulu-Lord
Richard J Povinelli
author_sort Masabho P Milali
title An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
title_short An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
title_full An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
title_fullStr An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
title_full_unstemmed An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
title_sort autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2020-01-01
description After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious. Ovary dissections, which are currently used to determine the parity status of mosquitoes, are very tedious and limited to few experts. An alternative to ovary dissections is near-infrared spectroscopy (NIRS), which can estimate the age in days and the infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating the parity status of wild mosquitoes. In this study, we train an artificial neural network (ANN) models on NIR spectra to estimate the parity status of wild mosquitoes. We use four different datasets: An. arabiensis collected from Minepa, Tanzania (Minepa-ARA); An. gambiae s.s collected from Muleba, Tanzania (Muleba-GA); An. gambiae s.s collected from Burkina Faso (Burkina-GA); and An.gambiae s.s from Muleba and Burkina Faso combined (Muleba-Burkina-GA). We train ANN models on datasets with spectra preprocessed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train the ANN models. Before the autoencoder was applied, ANN models estimated parity status of mosquitoes in Minepa-ARA, Muleba-GA, Burkina-GA and Muleba-Burkina-GA with out-of-sample accuracies of 81.9±2.8 (N = 274), 68.7±4.8 (N = 43), 80.3±2.0 (N = 48), and 75.7±2.5 (N = 91), respectively. With the autoencoder, ANN models tested on out-of-sample data achieved 97.1±2.2% (N = 274), 89.8 ± 1.7% (N = 43), 93.3±1.2% (N = 48), and 92.7±1.8% (N = 91) accuracies for Minepa-ARA, Muleba-GA, Burkina-GA, and Muleba-Burkina-GA, respectively. These results show that a combination of an autoencoder and an ANN trained on NIR spectra to estimate the parity status of wild mosquitoes yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagent-free, and simple-to-use technique compared to ovary dissections.
url https://doi.org/10.1371/journal.pone.0234557
work_keys_str_mv AT masabhopmilali anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT samsonskiware anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT nicodemjgovella anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT fredrosokumu anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT naveenbansal anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT serdarbozdag anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT jacquesdcharlwood anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT martafmaia anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT sheilabogoma anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT floydedowell anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT georgefcorliss anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT maggytsikululord anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT richardjpovinelli anautoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT masabhopmilali autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT samsonskiware autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT nicodemjgovella autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT fredrosokumu autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT naveenbansal autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT serdarbozdag autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT jacquesdcharlwood autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT martafmaia autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT sheilabogoma autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT floydedowell autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT georgefcorliss autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT maggytsikululord autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
AT richardjpovinelli autoencoderandartificialneuralnetworkbasedmethodtoestimateparitystatusofwildmosquitoesfromnearinfraredspectra
_version_ 1714814536160116736