Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers

Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Depa...

Full description

Bibliographic Details
Main Authors: Fazlollahi F, Sipos A, Kim YH, Hamm-Alvarez SF, Borok Z, Kim K-J, Crandall ED
Format: Article
Language:English
Published: Dove Medical Press 2011-11-01
Series:International Journal of Nanomedicine
Online Access:http://www.dovepress.com/translocation-of-pegylated-quantum-dots-across-rat-alveolar-epithelial-a8638
id doaj-41d7c5bd6331430098e7b2e772661800
record_format Article
spelling doaj-41d7c5bd6331430098e7b2e7726618002020-11-24T21:09:34ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132011-11-012011default28492857Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayersFazlollahi FSipos AKim YHHamm-Alvarez SFBorok ZKim K-JCrandall EDFarnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM) were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm) in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate) of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively). The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature decreased transmonolayer resistance by approximately 90% with a concomitant increase in quantum dot trafficking by about 80%; and 24 hours of treatment of RAECM with EGTA decreased transmonolayer resistance by about 95%, with increased quantum dot trafficking of up to approximately 130%. Conclusion: These data indicate that quantum dots do not injure RAECM and that quantum dot trafficking does not appear to take place via endocytic pathways involving caveolin, clathrin, or dynamin. We conclude that quantum dot translocation across RAECM takes place via both transcellular and paracellular pathways and, based on comparison with our prior studies, interactions of nanoparticles with RAECM are strongly dependent on nanoparticle composition and surface properties. Keywords: alveolar epithelial barrier, transport, paracellular pathways, endocytosishttp://www.dovepress.com/translocation-of-pegylated-quantum-dots-across-rat-alveolar-epithelial-a8638
collection DOAJ
language English
format Article
sources DOAJ
author Fazlollahi F
Sipos A
Kim YH
Hamm-Alvarez SF
Borok Z
Kim K-J
Crandall ED
spellingShingle Fazlollahi F
Sipos A
Kim YH
Hamm-Alvarez SF
Borok Z
Kim K-J
Crandall ED
Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
International Journal of Nanomedicine
author_facet Fazlollahi F
Sipos A
Kim YH
Hamm-Alvarez SF
Borok Z
Kim K-J
Crandall ED
author_sort Fazlollahi F
title Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
title_short Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
title_full Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
title_fullStr Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
title_full_unstemmed Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers
title_sort translocation of pegylated quantum dots across rat alveolar epithelial cell monolayers
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1176-9114
1178-2013
publishDate 2011-11-01
description Farnoosh Fazlollahi1,8, Arnold Sipos1,2, Yong Ho Kim1,2, Sarah F Hamm-Alvarez6, Zea Borok1–3, Kwang-Jin Kim1,2,5–7, Edward D Crandall1,2,4,8 1Will Rogers Institute Pulmonary Research Center, 2Department of Medicine, 3Department of Biochemistry and Molecular Biology, 4Department of Pathology, 5Department of Physiology and Biophysics, 6Department of Pharmacology and Pharmaceutical Sciences, 7Department of Biomedical Engineering, 8Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA Background: In this study, primary rat alveolar epithelial cell monolayers (RAECM) were used to investigate transalveolar epithelial quantum dot trafficking rates and underlying transport mechanisms. Methods: Trafficking rates of quantum dots (PEGylated CdSe/ZnS, core size 5.3 nm, hydrodynamic size 25 nm) in the apical-to-basolateral direction across RAECM were determined. Changes in bioelectric properties (ie, transmonolayer resistance and equivalent active ion transport rate) of RAECM in the presence or absence of quantum dots were measured. Involvement of endocytic pathways in quantum dot trafficking across RAECM was assessed using specific inhibitors (eg, methyl-ß-cyclodextrin, chlorpromazine, and dynasore for caveolin-, clathrin-, and dynamin-mediated endocytosis, respectively). The effects of lowering tight junctional resistance on quantum dot trafficking were determined by depleting Ca2+ in apical and basolateral bathing fluids of RAECM using 2 mM EGTA. Effects of temperature on quantum dot trafficking were studied by lowering temperature from 37°C to 4°C. Results: Apical exposure of RAECM to quantum dots did not elicit changes in transmonolayer resistance or ion transport rate for up to 24 hours; quantum dot trafficking rates were not surface charge-dependent; methyl-ß-cyclodextrin, chlorpromazine, and dynasore did not decrease quantum dot trafficking rates; lowering of temperature decreased transmonolayer resistance by approximately 90% with a concomitant increase in quantum dot trafficking by about 80%; and 24 hours of treatment of RAECM with EGTA decreased transmonolayer resistance by about 95%, with increased quantum dot trafficking of up to approximately 130%. Conclusion: These data indicate that quantum dots do not injure RAECM and that quantum dot trafficking does not appear to take place via endocytic pathways involving caveolin, clathrin, or dynamin. We conclude that quantum dot translocation across RAECM takes place via both transcellular and paracellular pathways and, based on comparison with our prior studies, interactions of nanoparticles with RAECM are strongly dependent on nanoparticle composition and surface properties. Keywords: alveolar epithelial barrier, transport, paracellular pathways, endocytosis
url http://www.dovepress.com/translocation-of-pegylated-quantum-dots-across-rat-alveolar-epithelial-a8638
work_keys_str_mv AT fazlollahif translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT siposa translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT kimyh translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT hammalvarezsf translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT borokz translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT kimkj translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
AT crandalled translocationofpegylatedquantumdotsacrossratalveolarepithelialcellmonolayers
_version_ 1716757959227211776