Summary: | A vactrain (or vacuum tube high-speed flying train) is considered as a novel proposed rail transportation approach in the ultra-high-speed scenario. The maglev train can run with low mechanical friction, low air resistance, and low noise mode at a speed exceeding 1000 km/h inside the vacuum tube regardless of weather conditions. Currently, there is no research on train-to-ground wireless communication system for vactrain. In this paper, we first summarize a list of the unique challenges and opportunities associated with the wireless communication for vactrain, then analyze the bandwidth and Quality of Service (QoS) requirements of vactrain’s train-to-ground communication services quantitatively. To address these challenges and utilize the unique opportunities, a leaky waveguide solution with simple architecture but excellent performance is proposed for wireless coverage for vactrains. The simulation of the leaky waveguide is conducted, and the results show the uniform phase distribution along the horizontal direction of the tube, but also the smooth field distribution at the point far away from the leaky waveguide, which can suppress Doppler frequency shift, indicating that the time-varying frequency-selective fading channel could be approximated as a stationary channel. Furthermore, the train-to-ground wireless access architectures based on leaky waveguide are studied and analyzed. Finally, the moving scheme is adopted based on centralized, cooperative, cloud Radio Access Network (C-RAN), so as to deal with the extremely frequent handoff issue.
|