Prediction of viscosity behavior in oxide glass materials using cation fingerprints with artificial neural networks

We propose a novel descriptor of materials, named ‘cation fingerprints’, based on the chemical formula or concentrations of raw materials and their respective properties. To test its performance, this method was used to predict the viscosity of glass materials using the experimental database INTERGL...

Full description

Bibliographic Details
Main Authors: Jaekyun Hwang, Yuta Tanaka, Seiichiro Ishino, Satoshi Watanabe
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:http://dx.doi.org/10.1080/14686996.2020.1786856
Description
Summary:We propose a novel descriptor of materials, named ‘cation fingerprints’, based on the chemical formula or concentrations of raw materials and their respective properties. To test its performance, this method was used to predict the viscosity of glass materials using the experimental database INTERGLAD. Using artificial neural network models, we succeeded in predicting the temperature required for glass to have a specific viscosity within a root-mean-square error of 33.0°C. We were also able to evaluate the effect of particular target raw materials using a model trained without including the specific target raw material. The results show that cation fingerprints with a neural network model can predict some unseen combinations of raw materials. In addition, we propose a method for estimating the prediction accuracy by calculating cosine similarity of the input features of the material which we want to predict.
ISSN:1468-6996
1878-5514