On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers

Abstract In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices Q=Cr((ba)ξ(1)2q0,(ba)ξ(2)2q1,(ba)ξ(3)2q2,…,(ba)ξ(n)2qn−1) $Q=C_{r} ( (\frac{b}{a} )^{\frac{\xi (1)}{2}}q_{0}, (\frac{b}{a} )^{\frac{\xi(2)}{2}}q_{1}, (\frac {b}{a} )^{\frac{\xi(3)}{2}}q_{...

Full description

Bibliographic Details
Main Authors: Cahit Köme, Yasin Yazlik
Format: Article
Language:English
Published: SpringerOpen 2017-08-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1466-0
id doaj-42d00ae7b2dc4706b9d210ca6d3bbb1a
record_format Article
spelling doaj-42d00ae7b2dc4706b9d210ca6d3bbb1a2020-11-24T20:49:02ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-08-012017111210.1186/s13660-017-1466-0On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbersCahit Köme0Yasin Yazlik1Department of Mathematics, Nevşehir Hacı Bektaş Veli UniversityDepartment of Mathematics, Nevşehir Hacı Bektaş Veli UniversityAbstract In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices Q=Cr((ba)ξ(1)2q0,(ba)ξ(2)2q1,(ba)ξ(3)2q2,…,(ba)ξ(n)2qn−1) $Q=C_{r} ( (\frac{b}{a} )^{\frac{\xi (1)}{2}}q_{0}, (\frac{b}{a} )^{\frac{\xi(2)}{2}}q_{1}, (\frac {b}{a} )^{\frac{\xi(3)}{2}}q_{2}, \dots, (\frac{b}{a} )^{\frac{\xi(n)}{2}}q_{n-1} )$ and L=Cr((ba)ξ(0)2l0,(ba)ξ(1)2l1,(ba)ξ(2)2l2,…,(ba)ξ(n−1)2ln−1) $L=C_{r} ( (\frac {b}{a} )^{\frac{\xi(0)}{2}}l_{0}, (\frac{b}{a} )^{\frac{\xi (1)}{2}}l_{1}, (\frac{b}{a} )^{\frac{\xi(2)}{2}}l_{2}, \dots, (\frac{b}{a} )^{\frac{\xi(n-1)}{2}}l_{n-1} ) $ whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L matrices.http://link.springer.com/article/10.1186/s13660-017-1466-0biperiodic Fibonacci numberbiperiodic Lucas numberr-circulant matrixnorm
collection DOAJ
language English
format Article
sources DOAJ
author Cahit Köme
Yasin Yazlik
spellingShingle Cahit Köme
Yasin Yazlik
On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
Journal of Inequalities and Applications
biperiodic Fibonacci number
biperiodic Lucas number
r-circulant matrix
norm
author_facet Cahit Köme
Yasin Yazlik
author_sort Cahit Köme
title On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
title_short On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
title_full On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
title_fullStr On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
title_full_unstemmed On the spectral norms of r-circulant matrices with the biperiodic Fibonacci and Lucas numbers
title_sort on the spectral norms of r-circulant matrices with the biperiodic fibonacci and lucas numbers
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2017-08-01
description Abstract In this paper, we present new upper and lower bounds for the spectral norms of the r-circulant matrices Q=Cr((ba)ξ(1)2q0,(ba)ξ(2)2q1,(ba)ξ(3)2q2,…,(ba)ξ(n)2qn−1) $Q=C_{r} ( (\frac{b}{a} )^{\frac{\xi (1)}{2}}q_{0}, (\frac{b}{a} )^{\frac{\xi(2)}{2}}q_{1}, (\frac {b}{a} )^{\frac{\xi(3)}{2}}q_{2}, \dots, (\frac{b}{a} )^{\frac{\xi(n)}{2}}q_{n-1} )$ and L=Cr((ba)ξ(0)2l0,(ba)ξ(1)2l1,(ba)ξ(2)2l2,…,(ba)ξ(n−1)2ln−1) $L=C_{r} ( (\frac {b}{a} )^{\frac{\xi(0)}{2}}l_{0}, (\frac{b}{a} )^{\frac{\xi (1)}{2}}l_{1}, (\frac{b}{a} )^{\frac{\xi(2)}{2}}l_{2}, \dots, (\frac{b}{a} )^{\frac{\xi(n-1)}{2}}l_{n-1} ) $ whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L matrices.
topic biperiodic Fibonacci number
biperiodic Lucas number
r-circulant matrix
norm
url http://link.springer.com/article/10.1186/s13660-017-1466-0
work_keys_str_mv AT cahitkome onthespectralnormsofrcirculantmatriceswiththebiperiodicfibonacciandlucasnumbers
AT yasinyazlik onthespectralnormsofrcirculantmatriceswiththebiperiodicfibonacciandlucasnumbers
_version_ 1716807049143123968