High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries

<p>The asymptotic behavior as <math alttext="$lambda o infty $"> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math> of the function <math alttext="$Uleft( {x,lambda } ight)$"...

Full description

Bibliographic Details
Main Author: Bloom Clifford O.
Format: Article
Language:English
Published: Hindawi Limited 1996-01-01
Series:Mathematical Problems in Engineering
Subjects:
Online Access:http://www.hindawi.net/access/get.aspx?journal=mpe&volume=2&pii=S1024123X96000385
id doaj-42ed884e980d44d6ac795d6163c27a60
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Bloom Clifford O.
spellingShingle Bloom Clifford O.
High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
Mathematical Problems in Engineering
High frequency radiation
scattering
global approximate solution
uniform asymptotic approximation
caustics
geometrical optics
inhomogeneous medium
anisotropic medium
reduced wave equation
author_facet Bloom Clifford O.
author_sort Bloom Clifford O.
title High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
title_short High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
title_full High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
title_fullStr High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
title_full_unstemmed High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
title_sort high frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundaries
publisher Hindawi Limited
series Mathematical Problems in Engineering
issn 1024-123X
1563-5147
publishDate 1996-01-01
description <p>The asymptotic behavior as <math alttext="$lambda o infty $"> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math> of the function <math alttext="$Uleft( {x,lambda } ight)$"> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> that satisfies the reduced wave equation <math alttext="$L_lambda left[ U ight] = abla cdot left( {Eleft( x ight) abla U} ight) + lambda ^2 N^2 left( x ight)U = 0$"> <mrow> <msub> <mi>L</mi> <mi>&lambda;</mi> </msub> <mrow> <mo>[</mo> <mi>U</mi> <mo>]</mo> </mrow> <mo>=</mo> <mo>&nabla;</mo> <mo>&sdot;</mo> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&nabla;</mo> <mi>U</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <msup> <mi>N</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>U</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> on an infinite 3-dimensional region, a Dirichlet condition on <math alttext="$partial V$"> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> , and an outgoing radiation condition is investigated. A function <math alttext="$U_N left( {x,lambda } ight)$"> <mrow> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> is constructed that is a global approximate solution as <math alttext="$lambda o infty $"> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math> of the problem satisfied by <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> . An estimate for <math alttext="$W_N left( {x,lambda } ight) = Uleft( {x,lambda } ight) - U_N left( {x,lambda } ight)$ "> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> <mo>&minus;</mo> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> on <math alttext="$V$ "> <mi>V</mi> </math> is obtained, which implies that <math alttext="$U_N left( {x,lambda } ight)$"> <mrow> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> is a uniform asymptotic approximation of <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> as <math alttext="$lambda o infty $ "> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math>, with an error that tends to zero as rapidly as <math alttext="$lambda ^{ - N} left( {N = 1,2,3,...} ight)$ "> <mrow> <msup> <mi>&lambda;</mi> <mrow> <mo>&minus;</mo> <mi>N</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>...</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math>. This is done by applying a priori estimates of the function <math alttext="$W_N left( {x,lambda } ight)$ "> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> in terms of its boundary values, and the <math alttext="${ext{L}}_{ext{2}} $"> <semantics> <mrow> <msub> <mtext>L</mtext> <mtext>2</mtext> </msub> </mrow> <annotation encoding='MathType-MTEF'> </annotation> </semantics></math> norm of <math alttext="$rL_lambda left[ {W_N left( {x,lambda } ight)} ight]$ "> <mrow> <mi>r</mi> <msub> <mi>L</mi> <mi>&lambda;</mi> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> </math> on <math alttext="$V$ "> <mi>V</mi> </math>. It is assumed that <math alttext="$Eleft( x ight)$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, <math alttext="$Nleft( x ight)$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, <math alttext="$partial V$ "> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> and the boundary data are smooth, that <math alttext="$Eleft( x ight) - I$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&minus;</mo> <mi>I</mi> </mrow> </math> and <math alttext="$Nleft( x ight) - 1$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&minus;</mo> <mn>1</mn> </mrow> </math> tend to zero algebraically fast as <math alttext="$r o infty $ "> <mrow> <mi>r</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math>, and finally that <math alttext="$Eleft( x ight)$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> and <math alttext="$Nleft( x ight)$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> are slowly varying; <math alttext="$partial V$ "> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> may be finite or infinite. </p><p>The solution <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> can be interpreted as a scalar potential of a high frequency acoustic or electromagnetic field radiating from the boundary of an impenetrable object of general shape. The energy of the field propagates through an inhomogeneous, anisotropic medium; the rays along which it propagates may form caustics. The approximate solution (potential) derived in this paper is defined on and in a neighborhood of any such caustic, and can be used to connect local &#8220;geometrical optics&#8221; type approximate solutions that hold on caustic free subsets of <math alttext="$V$ "> <mi>V</mi> </math>.</p><p>The result of this paper generalizes previous work of Bloom and Kazarinoff [C. O. BLOOM and N. D. KAZARINOFF, <emph>Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions</emph>, SPRINGER VERLAG, NEW YORK, NY, 1976].</p>
topic High frequency radiation
scattering
global approximate solution
uniform asymptotic approximation
caustics
geometrical optics
inhomogeneous medium
anisotropic medium
reduced wave equation
url http://www.hindawi.net/access/get.aspx?journal=mpe&volume=2&pii=S1024123X96000385
work_keys_str_mv AT bloomcliffordo highfrequencyasymptoticsolutionsofthereducedwaveequationoninfiniteregionswithnonconvexboundaries
_version_ 1725586667465605120
spelling doaj-42ed884e980d44d6ac795d6163c27a602020-11-24T23:16:33ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51471996-01-0124333365High frequency asymptotic solutions of the reduced wave equation on infinite regions with non-convex boundariesBloom Clifford O.<p>The asymptotic behavior as <math alttext="$lambda o infty $"> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math> of the function <math alttext="$Uleft( {x,lambda } ight)$"> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> that satisfies the reduced wave equation <math alttext="$L_lambda left[ U ight] = abla cdot left( {Eleft( x ight) abla U} ight) + lambda ^2 N^2 left( x ight)U = 0$"> <mrow> <msub> <mi>L</mi> <mi>&lambda;</mi> </msub> <mrow> <mo>[</mo> <mi>U</mi> <mo>]</mo> </mrow> <mo>=</mo> <mo>&nabla;</mo> <mo>&sdot;</mo> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&nabla;</mo> <mi>U</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <msup> <mi>N</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>U</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> on an infinite 3-dimensional region, a Dirichlet condition on <math alttext="$partial V$"> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> , and an outgoing radiation condition is investigated. A function <math alttext="$U_N left( {x,lambda } ight)$"> <mrow> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> is constructed that is a global approximate solution as <math alttext="$lambda o infty $"> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math> of the problem satisfied by <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> . An estimate for <math alttext="$W_N left( {x,lambda } ight) = Uleft( {x,lambda } ight) - U_N left( {x,lambda } ight)$ "> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> <mo>&minus;</mo> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> on <math alttext="$V$ "> <mi>V</mi> </math> is obtained, which implies that <math alttext="$U_N left( {x,lambda } ight)$"> <mrow> <msub> <mi>U</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> is a uniform asymptotic approximation of <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> as <math alttext="$lambda o infty $ "> <mrow> <mi>&lambda;</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math>, with an error that tends to zero as rapidly as <math alttext="$lambda ^{ - N} left( {N = 1,2,3,...} ight)$ "> <mrow> <msup> <mi>&lambda;</mi> <mrow> <mo>&minus;</mo> <mi>N</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>...</mn> </mrow> <mo>)</mo> </mrow> </mrow> </math>. This is done by applying a priori estimates of the function <math alttext="$W_N left( {x,lambda } ight)$ "> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> in terms of its boundary values, and the <math alttext="${ext{L}}_{ext{2}} $"> <semantics> <mrow> <msub> <mtext>L</mtext> <mtext>2</mtext> </msub> </mrow> <annotation encoding='MathType-MTEF'> </annotation> </semantics></math> norm of <math alttext="$rL_lambda left[ {W_N left( {x,lambda } ight)} ight]$ "> <mrow> <mi>r</mi> <msub> <mi>L</mi> <mi>&lambda;</mi> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>W</mi> <mi>N</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> </math> on <math alttext="$V$ "> <mi>V</mi> </math>. It is assumed that <math alttext="$Eleft( x ight)$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, <math alttext="$Nleft( x ight)$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, <math alttext="$partial V$ "> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> and the boundary data are smooth, that <math alttext="$Eleft( x ight) - I$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&minus;</mo> <mi>I</mi> </mrow> </math> and <math alttext="$Nleft( x ight) - 1$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&minus;</mo> <mn>1</mn> </mrow> </math> tend to zero algebraically fast as <math alttext="$r o infty $ "> <mrow> <mi>r</mi> <mo>&rarr;</mo> <mi>&infin;</mi> </mrow> </math>, and finally that <math alttext="$Eleft( x ight)$ "> <mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> and <math alttext="$Nleft( x ight)$ "> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> are slowly varying; <math alttext="$partial V$ "> <mrow> <mo>&part;</mo> <mi>V</mi> </mrow> </math> may be finite or infinite. </p><p>The solution <math alttext="$Uleft( {x,lambda } ight)$ "> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>&lambda;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </math> can be interpreted as a scalar potential of a high frequency acoustic or electromagnetic field radiating from the boundary of an impenetrable object of general shape. The energy of the field propagates through an inhomogeneous, anisotropic medium; the rays along which it propagates may form caustics. The approximate solution (potential) derived in this paper is defined on and in a neighborhood of any such caustic, and can be used to connect local &#8220;geometrical optics&#8221; type approximate solutions that hold on caustic free subsets of <math alttext="$V$ "> <mi>V</mi> </math>.</p><p>The result of this paper generalizes previous work of Bloom and Kazarinoff [C. O. BLOOM and N. D. KAZARINOFF, <emph>Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions</emph>, SPRINGER VERLAG, NEW YORK, NY, 1976].</p> http://www.hindawi.net/access/get.aspx?journal=mpe&volume=2&pii=S1024123X96000385High frequency radiationscatteringglobal approximate solutionuniform asymptotic approximationcausticsgeometrical opticsinhomogeneous mediumanisotropic mediumreduced wave equation