Application of phase-change materials in memory taxonomy

Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional o...

Full description

Bibliographic Details
Main Authors: Lei Wang, Liang Tu, Jing Wen
Format: Article
Language:English
Published: Taylor & Francis Group 2017-12-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:http://dx.doi.org/10.1080/14686996.2017.1332455
Description
Summary:Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
ISSN:1468-6996
1878-5514