Feature Extraction of Surface Electromyography Using Wavelet Weighted Permutation Entropy for Hand Movement Recognition

The feature extraction of surface electromyography (sEMG) signals has been an important aspect of myoelectric prosthesis control. To improve the practicability of myoelectric prosthetic hands, we proposed a feature extraction method for sEMG signals that uses wavelet weighted permutation entropy (WW...

Full description

Bibliographic Details
Main Authors: Xiaoyun Liu, Xugang Xi, Xian Hua, Hujiao Wang, Wei Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Healthcare Engineering
Online Access:http://dx.doi.org/10.1155/2020/8824194
Description
Summary:The feature extraction of surface electromyography (sEMG) signals has been an important aspect of myoelectric prosthesis control. To improve the practicability of myoelectric prosthetic hands, we proposed a feature extraction method for sEMG signals that uses wavelet weighted permutation entropy (WWPE). First, wavelet transform was used to decompose and preprocess sEMG signals collected from the relevant muscles of the upper limbs to obtain the wavelet sub-bands in each frequency segment. Then, the weighted permutation entropies (WPEs) of the wavelet sub-bands were extracted to construct WWPE feature set. Lastly, the WWPE feature set was used as input to a support vector machine (SVM) classifier and a backpropagation neural network (BPNN) classifier to recognize seven hand movements. Experimental results show that the proposed method exhibits remarkable recognition accuracy that is superior to those of single sub-band feature set and commonly used time-domain feature set. The maximum recognition accuracy rate is 100% for hand movements, and the average recognition accuracy rates of SVM and BPNN are 100% and 98%, respectively.
ISSN:2040-2295
2040-2309