Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis
Capsaicin prevents atherosclerotic plaque formation by activating TRPV1 cation channels, but its toxicity precludes its use in clinical settings. Here, Tang and colleagues use copper sulfide nanoparticles as a photothermal switch to locally and temporally activate TRPV1 in vascular smooth muscle cel...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-017-02657-z |
Summary: | Capsaicin prevents atherosclerotic plaque formation by activating TRPV1 cation channels, but its toxicity precludes its use in clinical settings. Here, Tang and colleagues use copper sulfide nanoparticles as a photothermal switch to locally and temporally activate TRPV1 in vascular smooth muscle cells and reduce plaque formation without apparent toxicity. |
---|---|
ISSN: | 2041-1723 |