Investigation of Voids Characteristics in an Asphalt Mixture Exposed to Salt Erosion Based on CT Images

The performance of an asphalt mixture will deteriorate under the condition of salt erosion, but there are different opinions on the mechanism of deterioration. Few studies have focused on the relation between the change of void characteristics and performance deterioration of an asphalt mixture expo...

Full description

Bibliographic Details
Main Authors: Rui Xiong, Wenyu Jiang, Fa Yang, Kehong Li, Bowen Guan, Hua Zhao
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/22/3774
Description
Summary:The performance of an asphalt mixture will deteriorate under the condition of salt erosion, but there are different opinions on the mechanism of deterioration. Few studies have focused on the relation between the change of void characteristics and performance deterioration of an asphalt mixture exposed to salt erosion. To explore the relation between the air voids characteristics of an asphalt mixture and mechanical damage under salt erosion, the mechanical damage in an asphalt mixture was measured by splitting strength. The asphalt mixture specimens, immersion solutions, asphalt mortar, and aggregate were scanned with CT technology. To segment the voids, the Otsu method was used over asphalt mortar and solution range of CT values. A three-dimensional reconstruction of the CT image was performed with Mimics 20 software to calculate the asphalt mixture’s void characteristics. On this basis, the relationships between the change in void characteristics and splitting strength were analyzed. The results showed that the ideal calculated void fraction can be obtained by threshold segmentation of the image void/asphalt mortar interface with the local CT value Otsu method. Under the salt corrosion environment, the increase of open voids of an asphalt mixture is linearly correlated with the decrease of splitting strength, while salts’ crystallization in the open voids produces crystallization pressure, accelerating the volume growth of open voids. The early damage of an asphalt mixture suffered from the salt may be mainly physical damage. These results can provide a useful reference for the performance of damage research on asphalt mixtures in salt enrichment areas.
ISSN:1996-1944