Caenorhabditis elegans male sensory-motor neurons and dopaminergic support cells couple ejaculation and post-ejaculatory behaviors

The circuit structure and function underlying post-coital male behaviors remain poorly understood. Using mutant analysis, laser ablation, optogenetics, and Ca2+ imaging, we observed that following C. elegans male copulation, the duration of post-coital lethargy is coupled to cellular events involved...

Full description

Bibliographic Details
Main Authors: Brigitte LeBoeuf, Paola Correa, Changhoon Jee, L René García
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2014-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/02938
Description
Summary:The circuit structure and function underlying post-coital male behaviors remain poorly understood. Using mutant analysis, laser ablation, optogenetics, and Ca2+ imaging, we observed that following C. elegans male copulation, the duration of post-coital lethargy is coupled to cellular events involved in ejaculation. We show that the SPV and SPD spicule-associated sensory neurons and the spicule socket neuronal support cells function with intromission circuit components, including the cholinergic SPC and PCB and the glutamatergic PCA sensory-motor neurons, to coordinate sex muscle contractions with initiation and continuation of sperm movement. Our observations suggest that the SPV and SPD and their associated dopamine-containing socket cells sense the intrauterine environment through cellular endings exposed at the spicule tips and regulate both sperm release into the hermaphrodite and the recovery from post-coital lethargy.
ISSN:2050-084X