Wiener chaos expansions of ocean waves

The ocean surface and, by extension, ocean wave energy are probabilistic and should be understood via probabilistic analysis. In the present work, which represents a seed that establishes a solid theoretical foundation on which the future work can be built, we demonstrate a probabilistic approach to...

Full description

Bibliographic Details
Main Authors: L. Henry, J. Bridge
Format: Article
Language:English
Published: AIP Publishing LLC 2021-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0043930
Description
Summary:The ocean surface and, by extension, ocean wave energy are probabilistic and should be understood via probabilistic analysis. In the present work, which represents a seed that establishes a solid theoretical foundation on which the future work can be built, we demonstrate a probabilistic approach to the time evolution of ocean wave energy via a semi-analytic solution using the Wiener chaos expansion method. We present a comparison between field observations and corresponding Wiener chaos expansion calculations of the potential and kinetic energies of ocean surface waves. We also compare Wiener chaos expansion calculations of ocean surface kurtosis with field observations. Significant characteristics of the behavior of field-data are seen in the results produced by the Wiener chaos expansion method. This demonstrates the possibility of the use of the Wiener chaos expansion method in understanding the probabilistic behavior of the time-evolution of total ocean wave energy for capture by wave power devices.
ISSN:2158-3226